
Building a
REST API with

Page 2 / 113

Building a REST API with

TABLE OF CONTENTS
1: BOOTSTRAP A WEB APPLICATION WITH SPRING 4

2: BUILD A REST API WITH SPRING 4 AND JAVA CONFIG

3: SPRING SECURITY FOR A REST API

4: SPRING SECURITY BASIC AUTHENTICATION

5: SPRING SECURITY DIGEST AUTHENTICATION

6: BASIC AND DIGEST AUTHENTICATION FOR A REST SERVICE
 WITH SPRING SECURITY

7: HTTP MESSAGE CONVERTERS WITH THE SPRING FRAMEWORK

8: REST API DISCOVERABILITY AND HATEOAS

9: HATEOAS FOR A SPRING REST SERVICE

10: ETAGS FOR REST WITH SPRING

11: REST PAGINATION IN SPRING

12: ERROR HANDLING FOR REST WITH SPRING

13: VERSIONING A REST API

14: TESTING REST WITH MULTIPLE MIME TYPESA

Page 3 / 113

Building a REST API with

1: BOOTSTRAP A WEB APPLICATION WITH SPRING 4

1. Overview 11

2. The Maven pom.xml .. 11

2.1. The cglib dependency before Spring 3.2 .. 12

2.2. The cglib dependency in Spring 3.2 and beyond ... 13

3. The Java based Web Configuration ... 13

3.1. The web.xml 15

4. Conclusion 16

2: BUILD A REST API WITH SPRING 4 AND JAVA
CONFIG

1. Overview 18

2. Understanding REST in Spring .. 18

3. The Java Configuration ... 19

4. Testing the Spring Context .. 19

5. The Controller20

6. Mapping the HTTP response codes ... 21

6.1. Unmapped Requests ... 21

6.2. Valid, Mapped Requests ...22

6.3. Client Error22

6.4. Using @ExceptionHandler ..22

Page 4 / 113

Building a REST API with

7. Additional Maven dependencies ..23

8. Conclusion24

3: SPRING SECURITY FOR A REST API

1. Overview26

2. Spring Security in the web.xml ..26

3. The Security Configuration .. 27

3.2. The Entry Point ..28

3.3. The Login Form for REST ..29

3.4. Authentication should return 200 instead of 301 ...29

3.5. Failed Authentication should return 401 instead of 302 ..30

3.6. The Authentication Manager and Provider ...31

3.7 Finally – Authentication against the running REST Service ...31

4. Maven and other trouble ...32

5. Conclusion32

4: SPRING SECURITY BASIC AUTHENTICATION

1. Overview34

2. The Spring Security Configuration ...34

3. Consuming The Secured Application ...35

4. Further Configuration – The Entry Point ...36

Page 5 / 113

Building a REST API with

5. The Maven Dependencies ...37

6. Conclusion38

5: SPRING SECURITY DIGEST AUTHENTICATION

1. Overview40

2. The Security XML Configuration ..40

3. Consuming the Secured Application ...42

4. The Maven Dependencies ...43

5. Conclusion 44

6: BASIC AND DIGEST AUTHENTICATION FOR A
REST SERVICE WITH SPRING SECURITY

1. Overview 46

2. Configuration of Basic Authentication .. 46

2.1. Satisfying the stateless constraint – getting rid of sessions ..47

3. Configuration of Digest Authentication ...47

4. Supporting both authentication protocols in the same RESTful service ... 48

4.1. Anonymous request .. 49

4.2. Request with authentication credentials ... 49

5. Testing both scenarios .. 49

6. Conclusion50

Page 6 / 113

Building a REST API with

7: HTTP MESSAGE CONVERTERS WITH THE
SPRING FRAMEWORK

1. Overview52

2. The Basics52

2.1. Enable Web MVC ..52

2.2. The Default Message Converters ...53

3. Client-Server Communication – JSON only ..54

3.1. High Level Content Negotiation ..54

3.2. @ResponseBody ...54

3.3. @RequestBody ..55

4. Custom Converters Configuration – adding XML Support ..56

5. Using Spring’s RestTemplate with Http Message Converters ..58

5.1. Retrieving the Resource with no Accept Header ...58

5.2. Retrieving a Resource with application/xml Accept header ..58

5.3. Retrieving a Resource with application/json Accept header ..59

5.4. Update a Resource with XML Content-Type ..60

6. Conclusion 61

8: REST API DISCOVERABILITY AND HATEOAS

1. Overview63

2. Why make the API Discoverable ..63

3. Discoverability Scenarios (Driven by tests) ..64

Page 7 / 113

Building a REST API with

3.1. Discover the valid HTTP methods ..64

3.2. Discover the URI of newly created Resource ...64

3.3. Discover the URI to GET All Resources of that type .. 65

4. Other potential discoverable URIs and microformats ..66

5. Conclusion67

9: HATEOAS FOR A SPRING REST SERVICE

1. Overview69

2. Decouple Discoverability through events ...69

3. Make the URI of a newly created Resource discoverable .. 71

4. Get of single Resource ... 71

5. Discoverability at the Root ..72

5.1. Discoverability is not about changing URIs ..73

6. Caveats of Discoverability ..73

7. Conclusion74

10: ETAGS FOR REST WITH SPRING

1. Overview76

2. REST and ETags ...76

3. Client-Server communication with curl ..77

4. ETag support in Spring ...78

Page 8 / 113

Building a REST API with

5. Testing ETags79

6. ETags are BIG81

7. Conclusion 82

11: REST PAGINATION IN SPRING

1. Overview84

2. Page as Resource vs Page as Representation ...84

3. The Controller 85

4. Discoverability for REST pagination .. 85

5. Test Driving Pagination ...87

6. Test Driving Pagination Discoverability ...87

7. Getting All Resources ..88

8. REST Paging with Range HTTP headers ..89

9. Conclusion89

12: ERROR HANDLING FOR REST WITH SPRING

1. Overview91

2. Solution 1 – The Controller level @ExceptionHandler ...91

3. Solution 2 – The HandlerExceptionResolver ... 92

3.1. ExceptionHandlerExceptionResolver .. 92

3.2. DefaultHandlerExceptionResolver .. 93

Page 9 / 113

Building a REST API with

3.3. ResponseStatusExceptionResolver .. 93

3.4. SimpleMappingExceptionResolver and AnnotationMethodHandlerExceptionResolver 94

3.5. Custom HandlerExceptionResolver ..94

4. Solution 3 – The New @ControllerAdvice (Spring 3.2 And Above) .. 95

5. Conclusion97

13: VERSIONING A REST API

1. The Problem99

2. What is in the Contract? ..99

2.1. URIs part of the Contract? ...99

2.2. Media Types part of the Contract? .. 100

3. High Level Options ... 100

4. Advantages and Disadvantages ... 102

5. Possible Changes to the API ... 103

5.1. Adding to the Representation of a Resource ... 103

5.2. Removing or changing an existing Representation .. 103

5.3. Major Semantic Changes ... 104

6. Conclusion 105

14: TESTING REST WITH MULTIPLE MIME TYPES

1. Overview107

Page 10 / 113

Building a REST API with

2. Goals 107

3. Testing Infrastructure ... 107

4. The JSON and XML Marshallers ..109

5. Consuming the Service with both JSON and XML ... 110

6. Maven and Jenkins .. 111

7. Conclusion 112

1. Overview

Page 11 / 113

Building a REST API with

1: BOOTSTRAP A WEB
APPLICATION WITH SPRING 4

1. Overview
This section illustrates how to Bootstrap a Web Application with Spring and also discusses

how to make the jump from XML to Java without having to completely migrate the entire XML

configuration.

2. The Maven pom.xml

<project xmlns=”http://maven.apache.org/POM/4.0.0”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd”>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org</groupId>
 <artifactId>rest</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>

 <dependencies>

 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>${spring.version}</version>
 <exclusions>
 <exclusion>
 <artifactId>commons-logging</artifactId>
 <groupId>commons-logging</groupId>
 </exclusion>
 </exclusions>
 </dependency>

 </dependencies>

 <build>
 <finalName>rest</finalName>

2.1. The cglib dependency before Spring 3.2

Page 12 / 113

Building a REST API with

 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <properties>
 <spring.version>4.0.5.RELEASE</spring.version>
 </properties>

</project>

2.1. The cglib dependency before Spring 3.2
You may wonder why cglib is a dependency – it turns out there is a valid reason to include it –

the entire configuration cannot function without it. If removed, Spring will throw:

Caused by: java.lang.IllegalStateException: CGLIB is required to process @Configuration

classes. Either add CGLIB to the classpath or remove the following @Configuration bean

definitions

The reason this happens is explained by the way Spring deals with @Configuration classes.

These classes are effectively beans, and because of this they need to be aware of the Context,

and respect scope and other bean semantics. This is achieved by dynamically creating a cglib

proxy with this awareness for each @Configuration class, hence the cglib dependency.

Also, because of this, there are a few restrictions for Configuration annotated classes:

• Configuration classes should not be final

• They should have a constructor with no arguments

2.2. The cglib dependency in Spring 3.2 and beyond

Page 13 / 113

Building a REST API with

2.2. The cglib dependency in Spring 3.2 and beyond
Starting with Spring 3.2, it is no longer necessary to add cglib as an explicit dependency.

This is because Spring is in now inlining cglib – which will ensure that all class based proxying

functionality will work out of the box with Spring 3.2.

The new cglib code is placed under the Spring package: org.springframework.cglib (replacing

the original net.sf.cglib). The reason for the package change is to avoid conflicts with any cglib

versions already existing on the classpath.

Also, the new cglib 3.0 is now used, upgraded from the older 2.2 dependency (see this JIRA

issue for more details).

Finally, now that Spring 4.0 is out in the wild, changes like this one (removing the cglib

dependency) are to be expected with Java 8 just around the corner – you can watch this

Spring Jira to keep track of the Spring support, and the Java 8 Resources page to keep tabs

on the that.

3. The Java based Web Configuration

@Configuration
@ImportResource({ “classpath*:/rest_config.xml” })
@ComponentScan(basePackages = “org.rest”)
@PropertySource({ “classpath:rest.properties”, “classpath:web.properties” })
public class AppConfig{

 @Bean
 public static PropertySourcesPlaceholderConfigurer properties() {
 return new PropertySourcesPlaceholderConfigurer();
 }
}

First, the @Configuration annotation – this is the main artifact used by the Java based Spring

configuration; it is itself meta-annotated with @Component, which makes the annotated

classes standard beans and as such, also candidates for component scanning. The main

purpose of @Configuration classes is to be sources of bean definitions for the Spring IoC

Container. For a more detailed description, see the official docs.

https://jira.spring.io/browse/SPR-9669
https://jira.spring.io/browse/SPR-9669
https://jira.spring.io/browse/SPR-9639
https://jira.spring.io/browse/SPR-9639
http://www.baeldung.com/java8
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

3. The Java based Web Configuration

Page 14 / 113

Building a REST API with

Then, @ImportResource is used to import the existing XML based Spring configuration.

This may be configuration which is still being migrated from XML to Java, or simply legacy

configuration that you wish to keep. Either way, importing it into the Container is essential

for a successful migration, allowing small steps without to much risk. The equivalent XML

annotation that is replaced is:

<import resource=”classpath*:/rest_config.xml” />

Moving on to @ComponentScan – this configures the component scanning directive,

effectively replacing the XML:

<context:component-scan base-package=”org.rest” />

As of Spring 3.1, the @Configuration are excluded from classpath scanning by default – see

this JIRA issue. Before Spring 3.1 though, these classes should have been excluded explicitly:

excludeFilters = { @ComponentScan.Filter(Configuration.class) }

The @Configuration classes should not be autodiscovered because they are already specified

and used by the Container – allowing them to be rediscovered and introduced into the Spring

context will result in the following error:

Caused by: org.springframework.context.annotation.ConflictingBeanDefinitionException:

Annotation-specified bean name ‘webConfig’ for bean class [org.rest.spring.AppConfig]

conflicts with existing, non-compatible bean definition of same name and class [org.rest.

spring.AppConfig]

And finally, using the @Bean annotation to configure the properties support –

PropertySourcesPlaceholderConfigurer is initialized in a @Bean annotated method, indicating

it will produce a Spring bean managed by the Container. This new configuration has replaced

the following XML:

<context:property-placeholder
location=”classpath:persistence.properties, classpath:web.properties”
ignore-unresolvable=”true”/>

https://jira.spring.io/browse/SPR-8808

3.1. The web.xml

Page 15 / 113

Building a REST API with

For a more in depth discussion on why it was necessary to manually register the

PropertySourcesPlaceholderConfigurer bean, see the Properties with Spring Tutorial.

3.1. The web.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app xmlns=”
 http://java.sun.com/xml/ns/javaee”
 xmlns:web=”http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd”
 id=”rest” version=”3.0”>

 <context-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </context-param>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>org.rest.spring.root</param-value>
 </context-param>
 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>

 <servlet>
 <servlet-name>rest</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextClass</param-name>
 <param-value>
 org.springframework.web.context.support.AnnotationConfigWebApplicationContext
 </param-value>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>org.rest.spring.rest</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>rest</servlet-name>
 <url-pattern>/api/*</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file />
 </welcome-file-list>

</web-app>

http://www.baeldung.com/2012/02/06/properties-with-spring/

3.1. The web.xml

Page 16 / 113

Building a REST API with

First, the root context is defined and configured to use

AnnotationConfigWebApplicationContext instead of the default XmlWebApplicationContext.

The newer AnnotationConfigWebApplicationContext accepts @Configuration annotated

classes as input for the Container configuration and is needed in order to set up the Java

based context.

Unlike XmlWebApplicationContext, it assumes no default configuration class locations, so

the “contextConfigLocation” init-param for the Servlet must be set. This will point to the java

package where the @Configuration classes are located; the fully qualified name(s) of the

classes are also supported.

Next, the DispatcherServlet is configured to use the same kind of context, with the only

difference that it’s loading configuration classes out of a different package.

Other than this, the web.xml doesn’t really change from a XML to a Java based configuration.

4. Conclusion
The presented approach allows for a smooth migration of

the Spring configuration from XML to Java, mixing the old

and the new. This is important for older projects, which may

have a lot of XML based configuration that cannot be

migrated all at once.

This way, in a migration, the XML beans can be ported in small increments.

In the next section on REST with Spring, I cover setting up MVC in the project,

configuration of the HTTP status codes, payload marshalling and content

negotiation.

This is an Eclipse based project, so it should be easy to import and run as it is.

http://www.baeldung.com/2011/10/25/building-a-restful-web-service-with-spring-3-1-and-java-based-configuration-part-2/

Building a REST API with

1. Overview

Page 18 / 113

Building a REST API with

2: BUILD A REST API WITH
SPRING 4 AND JAVA CONFIG

1. Overview
This section shows how to set up REST in Spring – the Controller and HTTP response codes,

configuration of payload marshalling and content negotiation.

2. Understanding REST in Spring
The Spring framework supports 2 ways of creating RESTful services:

• using MVC with ModelAndView

• using HTTP message converters

The ModelAndView approach is older and much better documented, but also more verbose

and configuration heavy. It tries to shoehorn the REST paradigm into the old model, which

is not without problems. The Spring team understood this and provided first-class REST

support starting with Spring 3.0.

The new approach, based on HttpMessageConverter and annotations, is much more

lightweight and easy to implement. Configuration is minimal and it provides sensible defaults

for what you would expect from a RESTful service. It is however newer and a a bit on the

light side concerning documentation; what’s , the reference doesn’t go out of it’s way to

make the distinction and the tradeoffs between the two approaches as clear as they should

be. Nevertheless, this is the way RESTful services should be build after Spring 3.0.

3. The Java Configuration

Page 19 / 113

Building a REST API with

3. The Java Configuration

@Configuration
@EnableWebMvc
public class WebConfig{
 //
}

The new @EnableWebMvc annotation does a number of useful things – specifically, in

the case of REST, it detect the existence of Jackson and JAXB 2 on the classpath and

automatically creates and registers default JSON and XML converters. The functionality of

the annotation is equivalent to the XML version:

<mvc:annotation-driven />

This is a shortcut, and though it may be useful in many situations, it’s not perfect.

When more complex configuration is needed, remove the annotation and extend

WebMvcConfigurationSupport directly.

4. Testing the Spring Context
Starting with Spring 3.1, we get first-class testing support for @Configuration classes:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = { ApplicationConfig.class, PersistenceConfig.class },
 loader = AnnotationConfigContextLoader.class)
public class SpringTest{

 @Test
 public void whenSpringContextIsInstantiated_thenNoExceptions(){
 // When
 }
}

The Java configuration classes are simply specified with the @ContextConfiguration

annotation and the new AnnotationConfigContextLoader loads the bean definitions from the

@Configuration classes.

http://spring.io/blog/2011/06/21/spring-3-1-m2-testing-with-configuration-classes-and-profiles/

5. The Controller

Page 20 / 113

Building a REST API with

Notice that the WebConfig configuration class was not included in the test because it needs

to run in a Servlet context, which is not provided.

5. The Controller
The @Controller is the central artifact in the entire Web Tier of the RESTful API. For the

purpose of the following examples, the controller is modeling a simple REST resource – Foo:

@Controller
@RequestMapping(value = “/foos”)
class FooController{

 @Autowired
 IFooService service;

 @RequestMapping(method = RequestMethod.GET)
 @ResponseBody
 public List< Foo > findAll(){
 return service.findAll();
 }

 @RequestMapping(value = “/{id}”, method = RequestMethod.GET)
 @ResponseBody
 public Foo findOne(@PathVariable(“id”) Long id){
 return RestPreconditions.checkFound(service.findOne(id));
 }

 @RequestMapping(method = RequestMethod.POST)
 @ResponseStatus(HttpStatus.CREATED)
 @ResponseBody
 public Long create(@RequestBody Foo resource){
 Preconditions.checkNotNull(resource);
 return service.create(resource);
 }

 @RequestMapping(value = “/{id}”, method = RequestMethod.PUT)
 @ResponseStatus(HttpStatus.OK)
 public void update(@PathVariable(“id”) Long id, @RequestBody Foo resource){
 Preconditions.checkNotNull(resource);
 RestPreconditions.checkNotNull(service.getById(resource.getId()));
 service.update(resource);
 }

 @RequestMapping(value = “/{id}”, method = RequestMethod.DELETE)
 @ResponseStatus(HttpStatus.OK)
 public void delete(@PathVariable(“id”) Long id){
 service.deleteById(id);
 }

}

6. Mapping the HTTP response codes

Page 21 / 113

Building a REST API with

You may have noticed I’m using a very simple, guava style RestPreconditions utility:

public class RestPreconditions {
 public static <T> T checkFound(final T resource) {
 if (resource == null) {
 throw new MyResourceNotFoundException();
 }
 return resource;
 }
}

The Controller implementation is non-public – this is because it doesn’t need to be. Usually

the controller is the last in the chain of dependencies – it receives HTTP requests from the

Spring front controller (the DispathcerServlet) and simply delegate them forward to a service

layer. If there is no use case where the controller has to be injected or manipulated through a

direct reference, then I prefer not to declare it as public.

The request mappings are straightforward – as with any controller, the actual value of the

mapping as well as the HTTP method are used to determine the target method for the

request. @RequestBody will bind the parameters of the method to the body of the HTTP

request, whereas @ResponseBody does the same for the response and return type. They

also ensure that the resource will be marshalled and unmarshalled using the correct HTTP

converter. Content negotiation will take place to choose which one of the active converters

will be used, based mostly on the Accept header, although other HTTP headers may be used

to determine the representation as well.

6. Mapping the HTTP response codes
The status codes of the HTTP response are one of the most important parts of the REST

service, and the subject can quickly become very complex. Getting these right can be what

makes or breaks the service.

6.1. Unmapped Requests
If Spring MVC receives a request which doesn’t have a mapping, it considers the request

not to be allowed and returns a 405 METHOD NOT ALLOWED back to the client. It is also

6.2. Valid, Mapped Requests

Page 22 / 113

Building a REST API with

good practice to include the Allow HTTP header when returning a 405 to the client, in order

to specify which operations are allowed. This is the standard behavior of Spring MVC and does

not require any additional configuration.

6.2. Valid, Mapped Requests
For any request that does have a mapping, Spring MVC considers the request valid and

responds with 200 OK if no other status code is specified otherwise. It is because of this that

controller declares different @ResponseStatus for the create, update and delete actions but

not for get, which should indeed return the default 200 OK.

6.3. Client Error
In case of a client error, custom exceptions are defined and mapped to the appropriate error

codes. Simply throwing these exceptions from any of the layers of the web tier will ensure

Spring maps the corresponding status code on the HTTP response.

@ResponseStatus(value = HttpStatus.BAD_REQUEST)
public class BadRequestException extends RuntimeException{
 //
}
@ResponseStatus(value = HttpStatus.NOT_FOUND)
public class ResourceNotFoundException extends RuntimeException{
 //
}

These exceptions are part of the REST API and, as such, should only be used in the appropriate

layers corresponding to REST; if for instance a DAO/DAL layer exist, it should not use the

exceptions directly. Note also that these are not checked exceptions but runtime exceptions –

in line with Spring practices and idioms.

6.4. Using @ExceptionHandler
Another option to map custom exceptions on specific status codes is to use the

@ExceptionHandler annotation in the controller. The problem with that approach is that

the annotation only applies to the controller in which it is defined, not to the entire Spring

7. Additional Maven dependencies

Page 23 / 113

Building a REST API with

Container, which means that it needs to be declared in each controller individually. This quickly

becomes cumbersome, especially in more complex applications which many controllers.

There are a few JIRA issues opened with Spring at this time to handle this and other related

limitations: SPR-8124, SPR-7278, SPR-8406.

7. Additional Maven dependencies
In addition to the spring-webmvc dependency required for the standard web application, we’ll

need to set up content marshalling and unmarshalling for the REST API:

<dependencies>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 </dependency>
 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>${jaxb-api.version}</version>
 <scope>runtime</scope>
 </dependency>
</dependencies>

<properties>
 <jackson.version>2.4.0</jackson.version>
 <jaxb-api.version>2.2.11</jaxb-api.version>
</properties>

These are the libraries used to convert the representation of the REST resource to either JSON

or XML.

https://jira.spring.io/browse/SPR-8124
https://jira.spring.io/browse/SPR-7278
https://jira.spring.io/browse/SPR-8406
http://www.baeldung.com/spring-with-maven#mvc

7. Additional Maven dependencies

Page 24 / 113

Building a REST API with

8. Conclusion
This section covered the configuration and implementation

of a REST Service using Spring 4 and Java based

configuration, discussing HTTP response codes, basic

Content Negotiation and marshaling.

In the next sections of the series I will focus on Discoverability of the API,

advanced content negotiation and working with additional representations of a

Resource.

This is an Eclipse based project, so it should be easy to import and run as it is.

http://www.baeldung.com/2011/11/06/restful-web-service-discoverability-part-4/

Building a REST API with

1. Overview

Page 26 / 113

Building a REST API with

3: SPRING SECURITY FOR A
REST API

1. Overview
This section shows how to Secure a REST Service using Spring and Spring Security 3.1

with Java based configuration. We will focus on how to set up the Security Configuration

specifically for the REST API using a Login and Cookie approach.

2. Spring Security in the web.xml
The architecture of Spring Security is based entirely on Servlet Filters and, as such, comes

before Spring MVC in regards to the processing of HTTP requests. Keeping this in mind, to

begin with, a filter needs to be declared in the web.xml of the application:

<filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>
</filter>
<filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

The filter must necessarily be named ‘springSecurityFilterChain’ to match the default bean

created by Spring Security in the container.

Note that the defined filter is not the actual class implementing the security logic but a

DelegatingFilterProxy with the purpose of delegating the Filter’s methods to an internal bean.

This is done so that the target bean can still benefit from the Spring context lifecycle and

flexibility.

3. The Security Configuration

Page 27 / 113

Building a REST API with

The URL pattern used to configure the Filter is /* even though the entire web service is

mapped to /api/* so that the security configuration has the option to secure other possible

mappings as well, if required.

3. The Security Configuration

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans
 xmlns=”http://www.springframework.org/schema/security”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:beans=”http://www.springframework.org/schema/beans”
 xmlns:sec=”http://www.springframework.org/schema/security”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.2.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-4.0.xsd”>

 <http entry-point-ref=”restAuthenticationEntryPoint”>
 <intercept-url pattern=”/api/admin/**” access=”ROLE_ADMIN”/>

 <form-login
 authentication-success-handler-ref=”mySuccessHandler”
 authentication-failure-handler-ref=”myFailureHandler”
 />

 <logout />
 </http>

 <beans:bean id=”mySuccessHandler”
 class=”org.rest.security.MySavedRequestAwareAuthenticationSuccessHandler”/>
 <beans:bean id=”myFailureHandler”
 class=”org.springframework.security.web.authentication.SimpleUrlAuthenticationFailureHandler”/>

 <authentication-manager alias=”authenticationManager”>
 <authentication-provider>
 <user-service>
 <user name=”temporary” password=”temporary” authorities=”ROLE_ADMIN”/>
 <user name=”user” password=”user” authorities=”ROLE_USER”/>
 </user-service>
 </authentication-provider>
 </authentication-manager>

</beans:beans>

Most of the configuration is done using the security namespace – for this to be enabled, the

schema locations must be defined and pointed to the correct 3.1 or 3.2 XSD versions. The

namespace is designed so that it expresses the common uses of Spring Security while still

providing hooks raw beans to accommodate more advanced scenarios.

3.2. The Entry Point

Page 28 / 113

Building a REST API with

3.1. The <http> element
The <http> element is the main container element for HTTP security configuration. In the

current implementation, it only secured a single mapping: /api/admin/**. Note that the

mapping is relative to the root context of the web application, not to the rest Servlet; this is

because the entire security configuration lives in the root Spring context and not in the child

context of the Servlet.

3.2. The Entry Point
In a standard web application, the authentication process may be automatically triggered when

the client tries to access a secured resource without being authenticated – this is usually done

by redirecting to a login page so that the user can enter credentials. However, for a REST Web

Service this behavior doesn’t make much sense – Authentication should only be done by a

request to the correct URI and all other requests should simply fail with a 401 UNAUTHORIZED

status code if the user is not authenticated.

Spring Security handles this automatic triggering of the authentication process with the

concept of an Entry Point – this is a required part of the configuration, and can be injected

via the entry-point-ref attribute of the <http> element. Keeping in mind that this functionality

doesn’t make sense in the context of the REST Service, the new custom entry point is defined

to simply return 401 whenever it is triggered:

@Component(“restAuthenticationEntryPoint”)
public class RestAuthenticationEntryPoint implements AuthenticationEntryPoint{

 @Override
 public void commence(HttpServletRequest request, HttpServletResponse response,
 AuthenticationException authException) throws IOException{
 response.sendError(HttpServletResponse.SC_UNAUTHORIZED, “Unauthorized”);
 }
}

A quick sidenote here is that the 401 is sent without the WWW-Authenticate header, as

required by the HTTP Spec – we can of course set the value manually if we need to.

3.3. The Login Form for REST

Page 29 / 113

Building a REST API with

3.3. The Login Form for REST
There are multiple ways to do Authentication for a REST API – one of the default Spring

Security provides is Form Login – which uses an authentication processing filter –

org.springframework.security.web.authentication.UsernamePasswordAuthenticationFilter.

The <form-login> element will create this filter and will also allow us to set our custom

authentication success handler on it. This can also be done manually by using the <custom-

filter> element to register a filter at the position FORM_LOGIN_FILTER – but the namespace

support is flexible enough.

Note that for a standard web application, the auto-config attribute of the <http> element is

shorthand syntax for some useful security configuration. While this may be appropriate for

some very simple configurations, it doesn’t fit and should not be used for a REST API.

3.4. Authentication should return 200 instead of 301
By default, form login will answer a successful authentication request with a 301 MOVED

PERMANENTLY status code; this makes sense in the context of an actual login form which

needs to redirect after login. For a RESTful web service however, the desired response for a

successful authentication should be 200 OK.

This is done by injecting a custom authentication success handler in the form login filter, to

replace the default one. The new handler implements the exact same login as the default

org.springframework.security.web.authentication.

SavedRequestAwareAuthenticationSuccessHandler with one notable difference – the redirect

logic is removed:

3.5. Failed Authentication should return 401 instead of 302

Page 30 / 113

Building a REST API with

public class MySavedRequestAwareAuthenticationSuccessHandler
 extends SimpleUrlAuthenticationSuccessHandler {

 private RequestCache requestCache = new HttpSessionRequestCache();

 @Override
 public void onAuthenticationSuccess(HttpServletRequest request, HttpServletResponse response,
 Authentication authentication) throws ServletException, IOException {
 SavedRequest savedRequest = requestCache.getRequest(request, response);

 if (savedRequest == null) {
 clearAuthenticationAttributes(request);
 return;
 }
 String targetUrlParam = getTargetUrlParameter();
 if (isAlwaysUseDefaultTargetUrl() ||
 (targetUrlParam != null &&
 StringUtils.hasText(request.getParameter(targetUrlParam)))) {
 requestCache.removeRequest(request, response);
 clearAuthenticationAttributes(request);
 return;
 }

 clearAuthenticationAttributes(request);
 }

 public void setRequestCache(RequestCache requestCache) {
 this.requestCache = requestCache;
 }
}

3.5. Failed Authentication should return 401 instead
of 302
Similarly – we configured the authentication failure handler – same way we did with the

success handler.

Luckily – in this case, we don’t need to actually define a new class for this handler – the

standard implementation – SimpleUrlAuthenticationFailureHandler – does just fine.

The only difference is that – now that we’re defining this explicitly in our XML config – it’s not

going to get a default defaultFailureUrl from Spring – and so it won’t redirect.

3.6. The Authentication Manager and Provider

Page 31 / 113

Building a REST API with

3.6. The Authentication Manager and Provider
The authentication process uses an in-memory provider to perform authentication – this is

meant to simplify the configuration as a production implementation of these artifacts is outside

the scope of this post.

3.7 Finally – Authentication against the running
REST Service
Now let’s see how we can authenticate against the REST API – the URL for login is /j_spring_

security_check – and a simple curl command performing login would be:

curl -i -X POST -d j_username=user -d j_password=userPass
http://localhost:8080/spring-security-rest/j_spring_security_check

This request will return the Cookie which will then be used by any subsequent request against

the REST Service.

We can use curl to authentication and store the cookie it receives in a file:

curl -i -X POST -d j_username=user -d j_password=userPass -c /opt/cookies.txt
http://localhost:8080/spring-security-rest/j_spring_security_check

Then we can use the cookie from the file to do further authenticated requests:

curl -i --header “Accept:application/json” -X GET -b /opt/cookies.txt
http://localhost:8080/spring-security-rest/api/foos

This authenticated request will correctly result in a 200 OK:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Wed, 24 Jul 2013 20:31:13 GMT

[{“id”:0,”name”:”JbidXc”}]

4. Maven and other trouble

Page 32 / 113

Building a REST API with

4. Maven and other trouble
The Spring core dependencies necessary for a web application and for the REST Service

have been discussed in detail. For security, we’ll need to add: spring-security-web and spring-

security-config – all of these have also been covered in the Maven for Spring Security tutorial.

It’s worth paying close attention to the way Maven will resolve the older Spring dependencies –

the resolution strategy will start causing problems once the security artifacts are added to the

pom. To address this problem, some of the core dependencies will need to be overridden in

order to keep them at the right version.

5. Conclusion
This section covered the basic security configuration and

implementation for a RESTful Service using Spring Security

3.1, discussing the web.xml, the security configuration, the

HTTP status codes for the authentication process and the

Maven resolution of the security artifacts.

http://www.baeldung.com/spring-with-maven#mvc
http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven#maven_problem

Building a REST API with

1. Overview

Page 34 / 113

Building a REST API with

4: SPRING SECURITY BASIC
AUTHENTICATION

1. Overview
This section shows how to set up, configure and customize Basic Authentication with Spring.

We’re going to built on top of this simple Spring MVC example, and secure the UI of the MVC

application with the Basic Auth mechanism provided by Spring Security.

2. The Spring Security Configuration
The Configuration for Spring Security is still XML:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans xmlns=”http://www.springframework.org/schema/security”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:beans=”http://www.springframework.org/schema/beans”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.2.xsd”>

 <http use-expressions=”true”>
 <intercept-url pattern=”/**” access=”isAuthenticated()” />

 <http-basic />
 </http>

 <authentication-manager>
 <authentication-provider>
 <user-service>
 <user name=”user1” password=”user1Pass” authorities=”ROLE_USER” />
 </user-service>
 </authentication-provider>
 </authentication-manager>

</beans:beans>

http://www.baeldung.com/spring-mvc-tutorial

3. Consuming The Secured Application

Page 35 / 113

Building a REST API with

There is of course the option of Java based configuration as well.

What is relevant here is the <http-basic> element inside the main <http> element of the

configuration – this is enough to enable Basic Authentication for the entire application.

The Authentication Manager is not the focus of this section, so we are using an in memory

manager with the user and password defined in plaintext.

The web.xml of the web application enabling Spring Security has already been discussed in

the previous section.

3. Consuming The Secured Application
The curl command is our go to tool for consuming the secured application.

First, let’s try to request the /homepage.html without providing any security credentials:

curl -i http://localhost:8080/spring-security-mvc-basic-auth/homepage.html

We get back the expected 401 Unauthorized and the Authentication Challenge:

HTTP/1.1 401 Unauthorized
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=E5A8D3C16B65A0A007CFAACAEEE6916B; Path=/spring-security-mvc-basic-auth/; HttpOnly
WWW-Authenticate: Basic realm=”Spring Security Application”
Content-Type: text/html;charset=utf-8
Content-Length: 1061
Date: Wed, 29 May 2013 15:14:08 GMT

The browser would interpret this challenge and prompt us for credentials with a simple dialog,

but since we’re using curl, this isn’t the case.

Now, let’s request the same resource – the homepage – but provide the credentials to access

it as well:

curl -i --user user1:user1Pass http://localhost:8080/spring-security-mvc-basic-auth/homepage.html

Now, the response from the server is 200 OK along with a Cookie:

http://docs.spring.io/autorepo/docs/spring-security/4.0.0.CI-SNAPSHOT/reference/htmlsingle/#jc
http://tools.ietf.org/html/rfc1945#section-10.16

4. Further Configuration – The Entry Point

Page 36 / 113

Building a REST API with

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=301225C7AE7C74B0892887389996785D; Path=/spring-security-mvc-basic-auth/; HttpOnly
Content-Type: text/html;charset=ISO-8859-1
Content-Language: en-US
Content-Length: 90
Date: Wed, 29 May 2013 15:19:38 GMT

From the browser, the application can be consumed normally – the only difference is that a

login page is no longer a hard requirement since all browsers support Basic Authentication

and use a dialog to prompt the user for credentials.

4. Further Configuration – The Entry Point
By default, the BasicAuthenticationEntryPoint provisioned by Spring Security returns a full

html page for a 401 Unauthorized response back to the client. This html representation of the

error renders well in a browser, but it not well suited for other scenarios, such as a REST API

where a json representation may be preferred.

The namespace is flexible enough for this new requirement as well – to address this – the

entry point can be overridden:

<http-basic entry-point-ref=”myBasicAuthenticationEntryPoint” />

The new entry point is defined as a standard bean:

5. The Maven Dependencies

Page 37 / 113

Building a REST API with

@Component
public class MyBasicAuthenticationEntryPoint extends BasicAuthenticationEntryPoint {

 @Override
 public void commence
 (HttpServletRequest request, HttpServletResponse response, AuthenticationException authEx)
 throws IOException, ServletException {
 response.addHeader(“WWW-Authenticate”, “Basic realm=\”” + getRealmName() + “\””);
 response.setStatus(HttpServletResponse.SC_UNAUTHORIZED);
 PrintWriter writer = response.getWriter();
 writer.println(“HTTP Status 401 - “ + authEx.getMessage());
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 setRealmName(“Baeldung”);
 super.afterPropertiesSet();
 }
}

By writing directly to the HTTP Response we now have full control over the format of the

response body.

5. The Maven Dependencies

The Maven dependencies for Spring Security have been discussed before in the Spring Security

with Maven article – we will need both spring-security-web and spring-security-config available

at runtime.

http://www.baeldung.com/spring-security-with-maven
http://www.baeldung.com/spring-security-with-maven

5. The Maven Dependencies

Page 38 / 113

Building a REST API with

6. Conclusion
In this example we secured the existing REST application with

Spring Security and Basic Authentication. We discussed the

XML configuration and we consumed the application with

simple curl commands. Finally took control of the exact error

message format – moving from the standard HTML error page

to a custom text or json format.

The implementation of this section can be found in the github project – this is an

Eclipse based project, so it should be easy to import and run as it is. When the

project runs locally, the sample html can be accessed at:

http://localhost:8080/spring-security-mvc-basic-auth/homepage.html

https://github.com/eugenp/tutorials/tree/master/spring-security-basic-auth#readme
http://localhost:8080/spring-security-mvc-basic-auth/homepage.html

Building a REST API with

1. Overview

Page 40 / 113

Building a REST API with

5: SPRING SECURITY DIGEST
AUTHENTICATION

1. Overview
This section illustrates how to set up, configure and customize Digest Authentication with

Spring. Similar to the previous section about Basic Authentication, we’re going to built on top

of the Spring REST Service from the previous sections, and secure the application with the

Digest Auth mechanism provided by Spring Security.

2. The Security XML Configuration
First thing to understand about the configuration is that, while Spring Security does have full

out of the box support for the Digest authentication mechanism, this support is not as well

integrated into the namespace as Basic Authentication was.

In this case, we need to manually define the raw beans that are going to make up the security

configuration – the DigestAuthenticationFilter and the DigestAuthenticationEntryPoint:

<?xml version=”1.0” encoding=”UTF-8”?>
<beans:beans xmlns=”http://www.springframework.org/schema/security”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:beans=”http://www.springframework.org/schema/beans”
 xsi:schemaLocation=”
 http://www.springframework.org/schema/security
 http://www.springframework.org/schema/security/spring-security-3.1.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.2.xsd”>

2. The Security XML Configuration

Page 41 / 113

Building a REST API with

 <beans:bean id=”digestFilter”
 class=”org.springframework.security.web.authentication.www.DigestAuthenticationFilter”>
 <beans:property name=”userDetailsService” ref=”userService” />
 <beans:property name=”authenticationEntryPoint” ref=”digestEntryPoint” />
 </beans:bean>
 <beans:bean id=”digestEntryPoint”
 class=”org.springframework.security.web.authentication.www.DigestAuthenticationEntryPoint”>
 <beans:property name=”realmName” value=”Contacts Realm via Digest Authentication” />
 <beans:property name=”key” value=”acegi” />
 </beans:bean>

 <!-- the security namespace configuration -->
 <http use-expressions=”true” entry-point-ref=”digestEntryPoint”>
 <intercept-url pattern=”/**” access=”isAuthenticated()” />

 <custom-filter ref=”digestFilter” after=”BASIC_AUTH_FILTER” />
 </http>

 <authentication-manager>
 <authentication-provider>
 <user-service id=”userService”>
 <user name=”user1” password=”user1Pass” authorities=”ROLE_USER” />
 </user-service>
 </authentication-provider>
 </authentication-manager>

</beans:beans>

Next, we need to integrate these beans into the overall security configuration – and in this

case, the namespace is still flexible enough to allow us to do that.

The first part of this is pointing to the custom entry point bean, via the entry-point-ref

attribute of the main <http> element.

The second part is adding the newly defined digest filter into the security filter chain. Since

this filter is functionally equivalent to the BasicAuthenticationFilter, we are using the same

relative position in the chain – this is specified by the BASIC_AUTH_FILTER alias in the overall

Spring Security Standard Filters.

Finally, notice that the Digest Filter is configured to point to the user service bean – and here,

the namespace is again very useful as it allows us to specify a bean name for the default user

service created by the <user-service> element:

<user-service id=”userService”>

http://docs.spring.io/spring-security/site/docs/3.1.x/reference/ns-config.html#ns-custom-filters

3. Consuming the Secured Application

Page 42 / 113

Building a REST API with

3. Consuming the Secured Application
We’re going to be using the curl command to consume the secured application and

understand how a client can interact with it.

Let’s start by requesting the homepage – without providing security credentials in the

request:

curl -i http://localhost/spring-security-mvc-digest-auth/homepage.html

As expected, we get back a response with a 401 Unauthorized status code:

HTTP/1.1 401 Unauthorized
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=CF0233C...; Path=/spring-security-mvc-digest-auth/; HttpOnly
WWW-Authenticate: Digest realm=”Contacts Realm via Digest Authentication”, qop=”auth”,
 nonce=”MTM3MzYzODE2NTg3OTo3MmYxN2JkOWYxZTc4MzdmMzBiN2Q0YmY0ZTU0N2RkZg==”
Content-Type: text/html;charset=utf-8
Content-Length: 1061
Date: Fri, 12 Jul 2013 14:04:25 GMT

If this request were sent by the browser, the authentication challenge would prompt the user

for credentials using a simple user/password dialog.

Let’s now provide the correct credentials and send the request again:

curl -i --digest --user
 user1:user1Pass http://localhost/spring-security-mvc-digest-auth/homepage.html

Notice that we are enabling Digest Authentication for the curl command via the –digest flag.

The first response from the server will be the same – the 401 Unauthorized – but the

challenge will now be interpreted and acted upon by a second request – which will succeed

with a 200 OK:

4. The Maven Dependencies

Page 43 / 113

Building a REST API with

HTTP/1.1 401 Unauthorized
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=A961E0D...; Path=/spring-security-mvc-digest-auth/; HttpOnly
WWW-Authenticate: Digest realm=”Contacts Realm via Digest Authentication”, qop=”auth”,
 MTM3MzYzODgyOTczMTo3YjM4OWQzMGU0YTgwZDg0YmYwZjRlZWJjMDQzZWZkOA==”
Content-Type: text/html;charset=utf-8
Content-Length: 1061
Date: Fri, 12 Jul 2013 14:15:29 GMT

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=55F996B...; Path=/spring-security-mvc-digest-auth/; HttpOnly
Content-Type: text/html;charset=ISO-8859-1
Content-Language: en-US
Content-Length: 90
Date: Fri, 12 Jul 2013 14:15:29 GMT

<html>
<head></head>

<body>
 <h1>This is the homepage</h1>
</body>
</html>

A final note on this interaction is that a client can preemptively send the correct

Authorization header with the first request, and thus entirely avoid the server security

challenge and the second request.

4. The Maven Dependencies
The security dependencies are discussed in depth in the Spring Security Maven tutorial. In

short, we will need to define spring-security-web and spring-security-config as dependencies

in our pom.xml.

http://www.baeldung.com/spring-security-with-maven

4. The Maven Dependencies

Page 44 / 113

Building a REST API with

5. Conclusion
In this section we introduce security into a simple Spring

REST API by leveraging the Digest Authentication support in

the framework.

The implementation of these examples can be found in the github project – this

is an Eclipse based project, so it should be easy to import and run as it is.

When the project runs locally, the homepage html can be accessed at (or, with

minimal Tomcat configuration, on port 80):

http://localhost:8080/spring-security-mvc-digest-auth/homepage.html

Finally, in the next section we’ll see that there is no reason an application

needs to choose between Basic and Digest authentication – both can be set up

simultaneously on the same URI structure, in such a way that the client can pick

between the two mechanisms when consuming the web application.

https://github.com/eugenp/tutorials/tree/master/spring-security-mvc-digest-auth#readme
http://localhost:8080/spring-security-mvc-digest-auth/homepage.html
http://www.baeldung.com/2011/11/20/basic-and-digest-authentication-for-a-restful-service-with-spring-security-3-1/

Building a REST API with

1. Overview

Page 46 / 113

Building a REST API with

6: BASIC AND DIGEST
AUTHENTICATION FOR A
REST SERVICE WITH SPRING
SECURITY

1. Overview
This section discusses how to set up both Basic and Digest Authentication on the same

URI structure of a REST API. In the two previous sections, we discussed another method of

securing the REST Service – form based authentication, so Basic and Digest authentication is

the natural alternative, as well as the more RESTful one.

2. Configuration of Basic Authentication
The main reason that form based authentication is not ideal for a RESTful Service is that

Spring Security will make use of Sessions – this is of course state on the server, so the

statelessness constraints in REST is practically ignored.

We’ll start by setting up Basic Authentication – first we remove the old custom entry point

and filter from the main <http> security element:

<http create-session=”stateless”>
 <intercept-url pattern=”/api/admin/**” access=”ROLE_ADMIN” />

 <http-basic />
</http>

Note how support for basic authentication has been added with a single configuration line –

<http-basic /> – which handles the creation and wiring of both the BasicAuthenticationFilter

and the BasicAuthenticationEntryPoint.

http://www.baeldung.com/2011/10/31/securing-a-restful-web-service-with-spring-security-3-1-part-3/

2.1. Satisfying the stateless constraint – getting rid of sessions

Page 47 / 113

Building a REST API with

2.1. Satisfying the stateless constraint – getting rid of
sessions
One of the main constraints of the RESTful architectural style is that the client-server

communication is fully stateless, as the original dissertation reads:

5.1.3 Stateless
We next add a constraint to the client-server interaction: communication must be stateless

in nature, as in the client-stateless-server (CSS) style of Section 3.4.3 (Figure 5-3), such that

each request from client to server must contain all of the information necessary to understand

the request, and cannot take advantage of any stored context on the server. Session state is

therefore kept entirely on the client.

The concept of Session on the server is one with a long history in Spring Security, and

removing it entirely has been difficult until now, especially when configuration was done by

using the namespace. However, Spring Security 3.1 augments the namespace configuration

with a new stateless option for session creation, which effectively guarantees that no session

will be created or used by Spring. What this new option does is completely removes all

session related filters from the security filter chain, ensuring that authentication is performed

for each request.

3. Configuration of Digest Authentication
Starting with the previous configuration, the filter and entry point necessary to set up digest

authentication will be defined as beans. Then, the digest entry point will override the one

created by <http-basic> behind the scenes. Finally, the custom digest filter will be introduced

in the security filter chain using the after semantics of the security namespace to position it

directly after the basic authentication filter.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://jira.springsource.org/browse/SEC-1424

4. Supporting both authentication protocols in the same RESTful service

Page 48 / 113

Building a REST API with

<http create-session=”stateless” entry-point-ref=”digestEntryPoint”>
 <intercept-url pattern=”/api/admin/**” access=”ROLE_ADMIN” />

 <http-basic />
 <custom-filter ref=”digestFilter” after=”BASIC_AUTH_FILTER” />
</http>

<beans:bean id=”digestFilter” class=
 “org.springframework.security.web.authentication.www.DigestAuthenticationFilter”>
 <beans:property name=”userDetailsService” ref=”userService” />
 <beans:property name=”authenticationEntryPoint” ref=”digestEntryPoint” />
</beans:bean>

<beans:bean id=”digestEntryPoint” class=
 “org.springframework.security.web.authentication.www.DigestAuthenticationEntryPoint”>
 <beans:property name=”realmName” value=”Contacts Realm via Digest Authentication”/>
 <beans:property name=”key” value=”acegi” />
</beans:bean>

<authentication-manager>
 <authentication-provider>
 <user-service id=”userService”>
 <user name=”eparaschiv” password=”eparaschiv” authorities=”ROLE_ADMIN” />
 <user name=”user” password=”user” authorities=”ROLE_USER” />
 </user-service>
 </authentication-provider>
</authentication-manager>

Unfortunately there is no support in the security namespace to automatically configure the

digest authentication the way basic authentication can be configured with <http-basic>.

Because of that, the necessary beans had to be defined and wired manually into the security

configuration.

4. Supporting both authentication protocols in the
same RESTful service
Basic or Digest authentication alone can be easily implemented in Spring Security 3.x; it is

supporting both of them for the same RESTful web service, on the same URI mappings that

introduces a new level of complexity into the configuration and testing of the service.

https://jira.spring.io/browse/SEC-1860

4.1. Anonymous request

Page 49 / 113

Building a REST API with

4.1. Anonymous request
With both basic and digest filters in the security chain, the way a anonymous request – a

request containing no authentication credentials (Authorization HTTP header) – is processed

by Spring Security is – the two authentication filters will find no credentials and will

continue execution of the filter chain. Then, seeing how the request wasn’t authenticated,

an AccessDeniedException is thrown and caught in the ExceptionTranslationFilter, which

commences the digest entry point, prompting the client for credentials.

The responsibilities of both the basic and digest filters are very narrow – they will continue

to execute the security filter chain if they are unable to identify the type of authentication

credentials in the request. It is because of this that Spring Security can have the flexibility to be

configured with support for multiple authentication protocols on the same URI.

When a request is made containing the correct authentication credentials – either basic or

digest – that protocol will be rightly used. However, for an anonymous request, the client will

get prompted only for digest authentication credentials. This is because the digest entry point

is configured as the main and single entry point of the Spring Security chain; as such digest

authentication can be considered the default.

4.2. Request with authentication credentials
A request with credentials for Basic authentication will be identified by the Authorization

header starting with the prefix “Basic”. When processing such a request, the credentials will

be decoded in the basic authentication filter and the request will be authorized. Similarly,

a request with credentials for Digest authentication will use the prefix “Digest” for it’s

Authorization header.

5. Testing both scenarios
The tests will consume the REST service by creating a new resource after authenticating with

either basic or digest:

5. Testing both scenarios

Page 50 / 113

Building a REST API with

@Test
public void givenAuthenticatedByBasicAuth_whenAResourceIsCreated_then201IsReceived(){
 // Given
 // When
 Response response = given()
 .auth().preemptive().basic(ADMIN_USERNAME, ADMIN_PASSWORD)
 .contentType(HttpConstants.MIME_JSON).body(new Foo(randomAlphabetic(6)))
 .post(paths.getFooURL());

 // Then
 assertThat(response.getStatusCode(), is(201));
}
@Test
public void givenAuthenticatedByDigestAuth_whenAResourceIsCreated_then201IsReceived(){
 // Given
 // When
 Response response = given()
 .auth().digest(ADMIN_USERNAME, ADMIN_PASSWORD)
 .contentType(HttpConstants.MIME_JSON).body(new Foo(randomAlphabetic(6)))
 .post(paths.getFooURL());

 // Then
 assertThat(response.getStatusCode(), is(201));
}

Note that the test using basic authentication adds credentials to the request preemptively,

regardless if the server has challenged for authentication or not. This is to ensure that the

server doesn’t need to challenge the client for credentials, because if it did, the challenge

would be for Digest credentials, since that is the default.

6. Conclusion
This section covered the configuration and implementation of

both Basic and Digest authentication for a RESTful service,

using mostly Spring Security 3.0 namespace support as well

as some new features added by Spring Security 3.1.

 For the full implementation, check out the github project.

https://github.com/eugenp/REST#readme

Building a REST API with

1. Overview

Page 52 / 113

Building a REST API with

7: HTTP MESSAGE
CONVERTERS WITH THE
SPRING FRAMEWORK

1. Overview
This section describes how to Configure HttpMessageConverter in Spring.

Simply put, message converters are used to marshall and unmarshall Java Objects to and

from JSON, XML, etc – over HTTP.

2. The Basics

2.1. Enable Web MVC
The Web Application needs to be configured with Spring MVC support – one convenient and

very customizable way to do this is to use the @EnableWebMvc annotation:

@EnableWebMvc
@Configuration
@ComponentScan({ “org.baeldung.web” })
public class WebConfig extends WebMvcConfigurerAdapter {
 ...
}

2.2. The Default Message Converters

Page 53 / 113

Building a REST API with

Note that this class extends WebMvcConfigurerAdapter – which will allow us to change the

default list of Http Converters with our own.

2.2. The Default Message Converters
By default, the following HttpMessageConverters instances are pre-enabled:

• ByteArrayHttpMessageConverter – converts byte arrays

• StringHttpMessageConverter – converts Strings

• ResourceHttpMessageConverter – converts org.springframework.core.io.Resource

for any type of octet stream

• SourceHttpMessageConverter – converts javax.xml.transform.Source

• FormHttpMessageConverter – converts form data to/from a MultiValueMap<String,

String>.

• Jaxb2RootElementHttpMessageConverter – converts Java objects to/from XML

(added only if JAXB2 is present on the classpath)

• MappingJackson2HttpMessageConverter – converts JSON (added only if Jackson 2

is present on the classpath)

• MappingJacksonHttpMessageConverter – converts JSON (added only if Jackson is

present on the classpath)

• AtomFeedHttpMessageConverter – converts Atom feeds (added only if Rome is

present on the classpath)

• RssChannelHttpMessageConverter – converts RSS feeds (added only if Rome is

present on the classpath)

3. Client-Server Communication – JSON only

Page 54 / 113

Building a REST API with

3. Client-Server Communication – JSON only

3.1. High Level Content Negotiation
Each HttpMessageConverter implementation has one or several associated MIME Types.

When receiving a new request, Spring will use of the “Accept” header to determine the media

type that it needs to respond with.

It will then try to find a registered converter that is capable of handling that specific media

type – and it will use it to convert the entity and send back the response.

The process is similar for receiving a request which contains JSON information – the framework

will use the “Content-Type” header to determine the media type of the request body.

It will then search for a HttpMessageConverter that can convert the body sent by the client to

a Java Object.

Let’s clarify this with a quick example:

• the Client sends a GET request to /foos with the Accept header set to application/json

– to get all Foo resources as Json

• the Foo Spring Controller is hit and returns the corresponding Foo Java entities

• Spring then uses one of the Jackson message converters to marshall the entities to

json

Let’s now look at the specifics of how this works – and how we should leverage the @

ResponseBody and @RequestBody annotations.

3.2. @ResponseBody
@ResponseBody on a Controller method indicates to Spring that the return value of the

method is serialized directly to the body of the HTTP Response. As discussed above, the

“Accept” header specified by the Client will be used to choose the appropriate Http Converter

to marshall the entity.

3.3. @RequestBody

Page 55 / 113

Building a REST API with

Let’s look at a simple example:

@RequestMapping(method=RequestMethod.GET, value=”/foos/{id}”)
public @ResponseBody Foo findById(@PathVariable long id) {
 return fooService.get(id);
}

Now, the client will specify the “Accept” header to application/json in the request – example

curl command:

curl --header “Accept: application/json” http://localhost:8080/spring-rest/foos/1

The Foo class:

public class Foo {
 private long id;
 private String name;
}

And the Http Response Body:

{
 “id”: 1,
 “name”: “Paul”,
}

3.3. @RequestBody
@RequestBody is used on the argument of a Controller method – it indicates to Spring that

the body of the HTTP Request is deserialized to that particular Java entity. As discussed

previously, the “Content-Type” header specified by the Client will be used to determine the

appropriate converter for this.

4. Custom Converters Configuration – adding XML Support

Page 56 / 113

Building a REST API with

Let’s look at an example:

@RequestMapping(method=RequestMethod.PUT, value=”/foos/{id}”)
public @ResponseBody void updateFoo(@RequestBody Foo foo, @PathVariable String id) {
 fooService.update(foo);
}

Now, let’s consume this with a JSON object – we’re specifying “Content-Type” to be

application/json:

curl -i -X PUT -H “Content-Type: application/json” \
-d ‘{“id”:”83”,”name”:”klik”}’ http://localhost:8080/spring-rest/foos/1

We get back a 200 OK – a successful response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Length: 0
Date: Fri, 10 Jan 2014 11:18:54 GMT

4. Custom Converters Configuration – adding XML
Support
We can customize the message converters by extending the WebMvcConfigurerAdapter

class and overriding the configureMessageConverters method:

@EnableWebMvc
@Configuration
@ComponentScan({ “org.baeldung.web” })
public class WebConfig extends WebMvcConfigurerAdapter {

 @Override
 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
 messageConverters.add(createXmlHttpMessageConverter());
 messageConverters.add(new MappingJackson2HttpMessageConverter());

 super.configureMessageConverters(converters);
 }

4. Custom Converters Configuration – adding XML Support

Page 57 / 113

Building a REST API with

 private HttpMessageConverter<Object> createXmlHttpMessageConverter() {
 MarshallingHttpMessageConverter xmlConverter =
 new MarshallingHttpMessageConverter();

 XStreamMarshaller xstreamMarshaller = new XStreamMarshaller();
 xmlConverter.setMarshaller(xstreamMarshaller);
 xmlConverter.setUnmarshaller(xstreamMarshaller);

 return xmlConverter;
 }
}

Note that the XStream library now needs to be present on the classpath.

Also be aware that by extending this support class, we are losing the default message

converters which were previously pre-registered – we only have what we define.

Let’s go over this example – we are creating a new converter – the

MarshallingHttpMessageConverter – and we’re using the Spring XStream support to configure

it. This allows a great deal of flexibility since we’re working with the low level APIs of the

underlying marshalling framework – in this case XStream – and we can configure that however

we want.

We can of course now do the same for Jackson – by defining our own

MappingJackson2HttpMessageConverter we can now set a custom ObjectMapper on this

converter and have it configured as we need to.

In this case XStream was the selected marshaller/unmarshaller implementation, but others like

CastorMarshaller can be used to – refer to Spring api documentation for full list of available

marshallers.

At this point – with XML enabled on the back end – we can consume the API with XML

Representations:

curl --header “Accept: application/xml” http://localhost:8080/spring-rest/foos/1

5. Using Spring’s RestTemplate with Http Message Converters

Page 58 / 113

Building a REST API with

5. Using Spring’s RestTemplate with Http Message
Converters
As well as with the server side, Http Message Conversion can be configured in the client side

on the Spring RestTemplate.

We’re going to configure the template with the “Accept” and “Content-Type” headers

when appropriate and we’re going to try to consume the REST API with full marshalling and

unmarshalling of the Foo Resource – both with JSON and with XML.

5.1. Retrieving the Resource with no Accept Header

@Test
public void testGetFoo() {
 String URI = “http://localhost:8080/spring-rest/foos/{id}”;
 RestTemplate restTemplate = new RestTemplate();
 Foo foo = restTemplate.getForObject(URI, Foo.class, “1”);
 Assert.assertEquals(new Integer(1), foo.getId());
}

5.2. Retrieving a Resource with application/xml
Accept header
Let’s now explicitly retrieve the Resource as an XML Representation – we’re going to define

a set of Converters – same way we did previously – and we’re going to set these on the

RestTemplate.

5.3. Retrieving a Resource with application/json Accept header

Page 59 / 113

Building a REST API with

Because we’re consuming XML, we’re going to use the same XStream marshaller as before:

@Test
public void givenConsumingXml_whenReadingTheFoo_thenCorrect() {
 String URI = BASE_URI + “foos/{id}”;
 RestTemplate restTemplate = new RestTemplate();
 restTemplate.setMessageConverters(getMessageConverters());

 HttpHeaders headers = new HttpHeaders();
 headers.setAccept(Arrays.asList(MediaType.APPLICATION_XML));
 HttpEntity<String> entity = new HttpEntity<String>(headers);

 ResponseEntity<Foo> response =
 restTemplate.exchange(URI, HttpMethod.GET, entity, Foo.class, “1”);
 Foo resource = response.getBody();

 assertThat(resource, notNullValue());
}
private List<HttpMessageConverter<?>> getMessageConverters() {
 XStreamMarshaller marshaller = new XStreamMarshaller();
 MarshallingHttpMessageConverter marshallingConverter =
 new MarshallingHttpMessageConverter(marshaller);
 converters.add(marshallingConverter);

 List<HttpMessageConverter<?>> converters = new ArrayList<HttpMessageConverter<?>>();
 return converters;
}

5.3. Retrieving a Resource with application/json
Accept header
Similarly, let’s now consume the REST API by asking for JSON:

@Test
public void givenConsumingJson_whenReadingTheFoo_thenCorrect() {
 String URI = BASE_URI + “foos/{id}”;

 RestTemplate restTemplate = new RestTemplate();
 restTemplate.setMessageConverters(getMessageConverters());

 HttpHeaders headers = new HttpHeaders();
 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));
 HttpEntity<String> entity = new HttpEntity<String>(headers);

 ResponseEntity<Foo> response =
 restTemplate.exchange(URI, HttpMethod.GET, entity, Foo.class, “1”);
 Foo resource = response.getBody();

5.4. Update a Resource with XML Content-Type

Page 60 / 113

Building a REST API with

 assertThat(resource, notNullValue());
}
private List<HttpMessageConverter<?>> getMessageConverters() {
 List<HttpMessageConverter<?>> converters = new ArrayList<HttpMessageConverter<?>>();
 converters.add(new MappingJackson2HttpMessageConverter());
 return converters;
}

5.4. Update a Resource with XML Content-Type
Finally, let’s also send JSON data to the REST API and specify the media type of that data via

the Content-Type header:

@Test
public void givenConsumingXml_whenWritingTheFoo_thenCorrect() {
 String URI = BASE_URI + “foos/{id}”;
 RestTemplate restTemplate = new RestTemplate();
 restTemplate.setMessageConverters(getMessageConverters());

 Foo resource = new Foo(4, “jason”);
 HttpHeaders headers = new HttpHeaders();
 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));
 headers.setContentType((MediaType.APPLICATION_XML));
 HttpEntity<Foo> entity = new HttpEntity<Foo>(resource, headers);

 ResponseEntity<Foo> response =
 restTemplate.exchange(URI, HttpMethod.PUT, entity, Foo.class, resource.getId());
 Foo fooResponse = response.getBody();

 Assert.assertEquals(resource.getId(), fooResponse.getId());
}

What’s interesting here is that we’re able to mix the media types – we are sending XML data

but we’re waiting for JSON data back from the server. This shows just how powerful the

Spring conversion mechanism really is.

5.4. Update a Resource with XML Content-Type

Page 61 / 113

Building a REST API with

6. Conclusion
In this section, we looked at how Spring MVC allows us to

specify and fully customize Http Message Converters to

automatically marshall/unmarshall Java Entities to and from

XML or JSON. This is of course a simplistic definition, and

there is so much more that the message conversion

mechanism can do – as we can see from the last test example.

We have also looked at how to leverage the same powerful mechanism with the

RestTemplate client – leading to a fully type-safe way of consuming the API.

This is an Eclipse based project, so it should be easy to import and run as it is.

Building a REST API with

1. Overview

Page 63 / 113

Building a REST API with

8: REST API DISCOVERABILITY
AND HATEOAS

1. Overview
The section will focus on Discoverability of the REST API, HATEOAS and practical scenarios

driven by tests.

2. Why make the API Discoverable
Discoverability of an API is a topic that doesn’t get enough well deserved attention, and as a

consequence very few APIs get it right. It is also something that, if done correctly, can make

the API not only RESTful and usable but also elegant.

To understand discoverability you need to understand that constraint that is Hypermedia

As The Engine Of Application State (HATEOAS); this constraint of a REST API is about full

discoverability of actions/transitions on a Resource from Hypermedia (Hypertext really), as

the only driver of application state.

If interaction is to be driven by the API through the conversation itself, concretely via

Hypertext, then there can be no documentation, as that would coerce the client to make

assumptions that are in fact outside of the context of the API.

In conclusion, the server should be descriptive enough to instruct the client how to use the

API via Hypertext only, which, in the case of a HTTP conversation, may be the Link header.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

3. Discoverability Scenarios (Driven by tests)

Page 64 / 113

Building a REST API with

3. Discoverability Scenarios (Driven by tests)
So what does it mean for a REST service to be discoverable? Throughout this section, we will

test individual traits of discoverability using Junit, rest-assured and Hamcrest. Since the REST

Service has been previously secured, each test first need to authenticate before consuming

the API.

3.1. Discover the valid HTTP methods
When a REST Service is consumed with an invalid HTTP method, the response should be a

405 METHOD NOT ALLOWED; in addition, it should also help the client discover the valid

HTTP methods that are allowed for that particular Resource, using the Allow HTTP Header in

the response:

@Test
public void
 whenInvalidPOSTIsSentToValidURIOfResource_thenAllowHeaderListsTheAllowedActions(){
 // Given
 String uriOfExistingResource = restTemplate.createResource();

 // When
 Response res = givenAuth().post(uriOfExistingResource);

 // Then
 String allowHeader = res.getHeader(HttpHeaders.ALLOW);
 assertThat(allowHeader, AnyOf.<String> anyOf(
 containsString(“GET”), containsString(“PUT”), containsString(“DELETE”)));
}

3.2. Discover the URI of newly created Resource
The operation of creating a new Resource should always include the URI of the newly created

resource in the response, using the Location HTTP Header. If the client does a GET on that

URI, the resource should be available:

https://code.google.com/p/rest-assured/
https://code.google.com/p/hamcrest/
https://gist.github.com/eugenp/1341570

3.3. Discover the URI to GET All Resources of that type

Page 65 / 113

Building a REST API with

@Test
public void whenResourceIsCreated_thenUriOfTheNewlyCreatedResourceIsDiscoverable() {
 // When
 Foo newResource = new Foo(randomAlphabetic(6));
 Response createResp = givenAuth().contentType(“application/json”)
 .body(unpersistedResource).post(getFooURL());
 String uriOfNewResource= createResp.getHeader(HttpHeaders.LOCATION);

 // Then
 Response response = givenAuth().header(HttpHeaders.ACCEPT, “application/json”)
 .get(uriOfNewResource);

 Foo resourceFromServer = response.body().as(Foo.class);
 assertThat(newResource, equalTo(resourceFromServer));
}

The test follows a simple scenario: a new Foo resource is created and the HTTP response is

used to discover the URI where the Resource is now accessible. The tests then goes one step

further and does a GET on that URI to retrieve the resource and compares it to the original, to

make sure that it has been correctly persisted.

3.3. Discover the URI to GET All Resources of that type
When we GET any particular Foo resource, we should be able to discover what we can do

next: we can list all the available Foo resources. Thus, the operation of retrieving an resource

should always include in its response the URI where to get all the resources of that type, again

making use of the Link header:

@Test
public void whenResourceIsRetrieved_thenUriToGetAllResourcesIsDiscoverable() {
 // Given
 String uriOfExistingResource = createAsUri();

 // When
 Response getResponse = givenAuth().get(uriOfExistingResource);

 // Then
 String uriToAllResources = HTTPLinkHeaderUtil
 .extractURIByRel(getResponse.getHeader(“Link”), “collection”);

 Response getAllResponse = givenAuth().get(uriToAllResources);
 assertThat(getAllResponse.getStatusCode(), is(200));
}

4. Other potential discoverable URIs and microformats

Page 66 / 113

Building a REST API with

Note that the full low level code for extractURIByRel – responsible for extracting the URIs by

rel relation is shown here.

This test covers the thorny subject of Link Relations in REST: the URI to retrieve all resources

uses the rel=”collection” semantics.

This type of link relation has not yet been standardized, but is already in use by several

microformats and proposed for standardization. Usage of non-standard link relations opens up

the discussion about microformats and richer semantics in RESTful web services.

4. Other potential discoverable URIs and
microformats
Other URIs could potentially be discovered via the Link header, but there is only so much

the existing types of link relations allow without moving to a richer semantic markup such as

defining custom link relations, the Atom Publishing Protocol or microformats.

For example the client should be able to discover the URI to create new Resources when

doing a GET on a specific Resource; unfortunately there is no link relation to model create

semantics. Luckily it is standard practice that the URI for creation is the same as the URI to GET

all resources of that type, with the only difference being the POST HTTP method. Forms can

also be used to achieve this.

https://gist.github.com/eugenp/8269915
http://microformats.org/wiki/existing-rel-values#non_HTML_rel_values
http://tools.ietf.org/html/rfc5988#section-6.2.1
http://tools.ietf.org/html/rfc5023
http://en.wikipedia.org/wiki/Microformat

4. Other potential discoverable URIs and microformats

Page 67 / 113

Building a REST API with

5. Conclusion
We have seen how a REST API is fully discoverable from the

root and with no prior knowledge – meaning the client is able

to navigate it by doing a GET on the root. Moving forward, all

state changes are driven by the client using the available and

discoverable transitions that the REST API provides in

representations (hence Representational State Transfer).

This section covered the some of the traits of discoverability in the context of

a REST web service, discussing HTTP method discovery, the relation between

create and get, discovery of the URI to get all resources, etc.

The implementation of all these examples and code snippets can be found in my

github project – this is an Eclipse based project, so it should be easy to import and

run as it is.

https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme

Building a REST API with

1. Overview

Page 69 / 113

Building a REST API with

9: HATEOAS FOR A SPRING
REST SERVICE

1. Overview
This section will focus on the implementation of discoverability in a Spring REST Service and

on satisfying the HATEOAS constraint.

2. Decouple Discoverability through events
Discoverability as a separate aspect or concern of the web layer should be decoupled from

the controller handling the HTTP request. In order to do so, the Controller will fire off events

for all the actions that require additional manipulation of the HTTP response.

First, the events:

public class SingleResourceRetrieved extends ApplicationEvent {
 private HttpServletResponse response;

 public SingleResourceRetrieved(Object source,
 HttpServletResponse response) {
 super(source);

 this.response = response;
 }

 public HttpServletResponse getResponse() {
 return response;
 }
}
public class ResourceCreated extends ApplicationEvent {
 private HttpServletResponse response;
 private long idOfNewResource;

 public ResourceCreated(Object source,
 HttpServletResponse response, long idOfNewResource) {
 super(source);

2. Decouple Discoverability through events

Page 70 / 113

Building a REST API with

 this.response = response;
 this.idOfNewResource = idOfNewResource;
 }

 public HttpServletResponse getResponse() {
 return response;
 }
 public long getIdOfNewResource() {
 return idOfNewResource;
 }
}

Then, the Controller, with 2 simple operations – find by id and create:

@Controller
@RequestMapping(value = “/foos”)
public class FooController {

 @Autowired
 private ApplicationEventPublisher eventPublisher;

 @Autowired
 private IFooService service;

 @RequestMapping(value = “foos/{id}”, method = RequestMethod.GET)
 @ResponseBody
 public Foo findById(@PathVariable(“id”) Long id, HttpServletResponse response) {
 Foo resourceById = Preconditions.checkNotNull(service.findOne(id));

 eventPublisher.publishEvent(new SingleResourceRetrieved(this, response));
 return resourceById;
 }

 @RequestMapping(method = RequestMethod.POST)
 @ResponseStatus(HttpStatus.CREATED)
 public void create(@RequestBody Foo resource, HttpServletResponse response) {
 Preconditions.checkNotNull(resource);
 Long newId = service.create(resource).getId();

 eventPublisher.publishEvent(new ResourceCreated(this, response, newId));
 }
}

These events can then be handled by any number of decoupled listeners, each focusing on

it’s own particular case and each moving towards satisfying the overall HATEOAS constraint.

The listeners should be the last objects in the call stack and no direct access to them is

necessary; as such they are not public.

3. Make the URI of a newly created Resource discoverable

Page 71 / 113

Building a REST API with

3. Make the URI of a newly created Resource
discoverable
As discussed in the previous section on HATEOAS, the operation of creating a new Resource

should return the URI of that resource in the Location HTTP header of the response; this is

handled by a listener:

@Component
class ResourceCreatedDiscoverabilityListener
 implements ApplicationListener< ResourceCreated >{

 @Override
 public void onApplicationEvent(ResourceCreated resourceCreatedEvent){
 Preconditions.checkNotNull(resourceCreatedEvent);

 HttpServletResponse response = resourceCreatedEvent.getResponse();
 long idOfNewResource = resourceCreatedEvent.getIdOfNewResource();

 addLinkHeaderOnResourceCreation(response, idOfNewResource);
 }
 void addLinkHeaderOnResourceCreation
 (HttpServletResponse response, long idOfNewResource){
 URI uri = ServletUriComponentsBuilder.fromCurrentRequestUri().
 path(“/{idOfNewResource}”).buildAndExpand(idOfNewResource).toUri();
 response.setHeader(“Location”, uri.toASCIIString());
 }
}

We are now making use of the ServletUriComponentsBuilder – this was introduced in Spring 3.1

to help with using the current Request. This way, we don’t need to pass anything around and

we can simply access this statically.

If the API would return ResponseEntity – we could also use the Location support introduced

here.

4. Get of single Resource
On retrieving a single Resource, the client should be able to discover the URI to get all

Resources of that particular type:

https://jira.spring.io/browse/SPR-8020
https://jira.spring.io/browse/SPR-8020

5. Discoverability at the Root

Page 72 / 113

Building a REST API with

@Component
class SingleResourceRetrievedDiscoverabilityListener
 implements ApplicationListener< SingleResourceRetrieved >{

 @Override
 public void onApplicationEvent(SingleResourceRetrieved resourceRetrievedEvent){
 Preconditions.checkNotNull(resourceRetrievedEvent);

 HttpServletResponse response = resourceRetrievedEvent.getResponse();
 addLinkHeaderOnSingleResourceRetrieval(request, response);
 }
 void addLinkHeaderOnSingleResourceRetrieval (HttpServletResponse response){
 String requestURL = ServletUriComponentsBuilder.fromCurrentRequestUri().
 build().toUri().toASCIIString();
 int positionOfLastSlash = requestURL.lastIndexOf(“/”);
 String uriForResourceCreation = requestURL.substring(0, positionOfLastSlash);

 String linkHeaderValue = LinkUtil
 .createLinkHeader(uriForResourceCreation, “collection”);
 response.addHeader(LINK_HEADER, linkHeaderValue);
 }
}

Note that the semantics of the link relation make use of the “collection” relation type, specified

and used in several microformats, but not yet standardized.

The Link header is one of the most used HTTP header for the purposes of discoverability. The

utility to create this header is simple enough:

public final class LinkUtil {
 public static String createLinkHeader(final String uri, final String rel) {
 return “<” + uri + “>; rel=\”” + rel + “\””;
 }
}

5. Discoverability at the Root
The root is the entry point in the entire service – it is what the client comes into contact with

when consuming the API for the first time. If the HATEOAS constraint is to be considered and

implemented throughout, then this is the place to start. The fact that all the main URIs of the

system have to be discoverable from the root shouldn’t come as much of a surprise by this

point.

http://microformats.org/wiki/existing-rel-values#non_HTML_rel_values

5.1. Discoverability is not about changing URIs

Page 73 / 113

Building a REST API with

Let’s now look at the controller for this:

@RequestMapping(value = “admin”,method = RequestMethod.GET)
@ResponseStatus(value = HttpStatus.NO_CONTENT)
public void adminRoot(HttpServletRequest request, HttpServletResponse response){
 String rootUri = request.getRequestURL().toString();

 URI fooUri = new UriTemplate(“{rootUri}/{resource}”).expand(rootUri, “foo”);
 String linkToFoo = LinkUtil.createLinkHeader
 (fooUri.toASCIIString(), “collection”);
 response.addHeader(“Link”, linkToFoo);
}

This is of course an illustration of the concept, focusing on a single, sample URI, for Foo

Resources – a real implementation should add, similarly, URIs for all the Resources published to

the client.

5.1. Discoverability is not about changing URIs
This can be a controversial point – one the one hand, the purpose of HATOAS is to have the

client discover the URIs of the API and not rely on hardcoded values. On the other hand – this

is not how the web works: yes, URIs are discovered, but they are also bookmarked.

A subtle but important distinction is evolution of the API – the old URIs should still work, but

any client that will discover the API should discover the new URIs – which allows the API to

change dynamically, and good clients to work well even when the API changes.

In conclusion – just because all URIs of the RESTful web service should be considered cool URIs

(and cool URIs don’t change) – that doesn’t mean that adhering to the HATEOAS constraint

isn’t extremely useful when evolving the API.

6. Caveats of Discoverability
As some of the discussions around the previous articles state, the first goal of discoverability

is to make minimal or no use of documentation and have the client learn and understand

how to use the API via the responses it gets. In fact, this shouldn’t be regarded as such a far

http://www.w3.org/TR/cooluris/
http://www.w3.org/Provider/Style/URI.html

6. Caveats of Discoverability

Page 74 / 113

Building a REST API with

fetched ideal – it is how we consume every new web page – without any documentation. So, if

the concept is more problematic in the context of REST, then it must be a matter of technical

implementation, not of a question of whether or not it’s possible.

That being said, technically, we are still far from the a fully working solution – the specification

and framework support are still evolving, and because of that, some compromises may have to

be made; these are nevertheless compromises and should be regarded as such.

7. Conclusion
In this section we covered the implementation of some of the

traits of discoverability in the context of a RESTful Service with

Spring MVC and touched on the concept of discoverability at

the root.

The implementation of all these examples and code snippets can be found in

my github project – this is an Eclipse based project, so it should be easy to import

and run as it is.

https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme

Building a REST API with

1. Overview

Page 76 / 113

Building a REST API with

10: ETAGS FOR REST WITH
SPRING

1. Overview
This section will focus on working with ETags in Spring, integration testing of the REST API

and consumption scenarios with curl.

2. REST and ETags
From the official Spring documentation on ETag support:

An ETag (entity tag) is an HTTP response header returned by an HTTP/1.1 compliant web

server used to determine change in content at a given URL.

ETags are used for two things – caching and conditional requests. The ETag value can be

though as a hash computed out of the bytes of the Response body. Because a cryptographic

hash function is likely used, even the smallest modification of the body will drastically change

the output and thus the value of the ETag. This is only true for strong ETags – the protocol

does provide a weak Etag as well.

Using an If-* header turns a standard GET request into a conditional GET. The two If-*

headers that are using with ETags are “If-None-Match” and “If-Match” – each with it’s own

semantics as discussed later in this section.

http://en.wikipedia.org/wiki/HTTP_ETag
http://tools.ietf.org/html/rfc2616#section-13.3.3
http://tools.ietf.org/html/rfc2616#section-14.26
http://tools.ietf.org/html/rfc2616#section-14.24

3. Client-Server communication with curl

Page 77 / 113

Building a REST API with

3. Client-Server communication with curl
A simple Client-Server communication involving ETags can be broken down into the steps:

- first, the Client makes a REST API call – the Response includes the ETag header to be

stored for further use:

curl -H “Accept: application/json” -i http://localhost:8080/rest-sec/api/resources/1

HTTP/1.1 200 OK
ETag: “f88dd058fe004909615a64f01be66a7”
Content-Type: application/json;charset=UTF-8
Content-Length: 52

- next request the Client makes to the REST API includes the If-None-Match request header

with the ETag value from the previous step; if the Resource has not changed on the Server,

the Response will contain no body and a status code of 304 – Not Modified:

curl -H “Accept: application/json” -H ‘If-None-Match: “f88dd058fe004909615a64f01be66a7”’
 -i http://localhost:8080/rest-sec/api/resources/1
?

HTTP/1.1 304 Not Modified
ETag: “f88dd058fe004909615a64f01be66a7”

- now, before retrieving the Resource again, we will change it by performing an update:

curl --user admin@fake.com:adminpass -H “Content-Type: application/json” -i
 -X PUT --data ‘{ “id”:1, “name”:”newRoleName2”, “description”:”theNewDescription” }’

http://localhost:8080/rest-sec/api/resources/1

HTTP/1.1 200 OK
ETag: “d41d8cd98f00b204e9800998ecf8427e”
Content-Length: 0

4. ETag support in Spring

Page 78 / 113

Building a REST API with

- finally, we send out the the last request to retrieve the Privilege again; keep in mind that it has

been updated since the last time it was retrieved, so the previous ETag value should no longer

work – the response will contain the new data and a new ETag which, again, can be stored for

further use:

curl -H “Accept: application/json” -H ‘If-None-Match: “f88dd058fe004909615a64f01be66a7”’ -i

http://localhost:8080/rest-sec/api/resources/1

HTTP/1.1 200 OK
ETag: “03cb37ca667706c68c0aad4cb04c3a211”
Content-Type: application/json;charset=UTF-8
Content-Length: 56

And there you have it – ETags in the wild and saving bandwidth.

4. ETag support in Spring
On to the Spring support – to use ETag in Spring is extremely easy to set up and completely

transparent for the application. The support is enabled by adding a simple Filter in the web.

xml:

<filter>
 <filter-name>etagFilter</filter-name>
 <filter-class>org.springframework.web.filter.ShallowEtagHeaderFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>etagFilter</filter-name>
 <url-pattern>/api/*</url-pattern>
</filter-mapping>

The filter is mapped on the same URI pattern as the RESTful API itself. The filter itself is the

standard implementation of ETag functionality since Spring 3.0.

The implementation is a shallow one – the ETag is calculated based on the response, which

5. Testing ETags

Page 79 / 113

Building a REST API with

will save bandwidth but not server performance. So, a request that will benefit from the ETag

support will still be processed as a standard request, consume any resource that it would

normally consume (database connections, etc) and only before having it’s response returned

back to the client will the ETag support kick in.

At that point the ETag will be calculated out of the Response body and set on the Resource

itself; also, if the If-None-Match header was set on the Request, it will be handled as well.

A deeper implementation of the ETag mechanism could potentially provide much greater

benefits – such as serving some requests from the cache and not having to perform the

computation at all – but the implementation would most definitely not be as simple, nor as

pluggable as the shallow approach described here.

5. Testing ETags
Let’s start simple – we need to verify that the response of a simple request retrieving a single

Resource will actually return the “ETag” header:

@Test
public void givenResourceExists_whenRetrievingResource_thenEtagIsAlsoReturned() {
 // Given
 String uriOfResource = createAsUri();

 // When
 Response findOneResponse = RestAssured.given().header(“Accept”, “application/json”).get(uriOfResource);

 // Then
 assertNotNull(findOneResponse.getHeader(“ETag”));
}

Next, we verify the happy path of the ETag behaviour – if the Request to retrieve the Resource

from the server uses the correct ETag value, then the Resource is no longer returned.

@Test
public void givenResourceWasRetrieved_whenRetrievingAgainWithEtag_thenNotModifiedReturned() {
 // Given
 String uriOfResource = createAsUri();
 Response findOneResponse = RestAssured.given().
 header(“Accept”, “application/json”).get(uriOfResource);
 String etagValue = findOneResponse.getHeader(HttpHeaders.ETAG);

5. Testing ETags

Page 80 / 113

Building a REST API with

 // When
 Response secondFindOneResponse= RestAssured.given().
 header(“Accept”, “application/json”).headers(“If-None-Match”, etagValue)
 .get(uriOfResource);

 // Then
 assertTrue(secondFindOneResponse.getStatusCode() == 304);
}

Step by step:

• a Resource is first created and then retrieved – the ETag value is stored for further use

• a new retrieve request is sent, this time with the “If-None-Match” header specifying the

ETag value previously stored

• on this second request, the server simply returns a 304 Not Modified, since the

Resource itself has indeed not beeing modified between the two retrieval operations

Finally, we verify the case where the Resource is changed between the first and the second

retrieval requests:

@Test
public void
 givenResourceWasRetrievedThenModified_whenRetrievingAgainWithEtag_thenResourceIsReturned() {
 // Given
 String uriOfResource = createAsUri();
 Response findOneResponse = RestAssured.given().
 header(“Accept”, “application/json”).get(uriOfResource);
 String etagValue = findOneResponse.getHeader(HttpHeaders.ETAG);

 existingResource.setName(randomAlphabetic(6));
 update(existingResource);

 // When
 Response secondFindOneResponse= RestAssured.given().
 header(“Accept”, “application/json”).headers(“If-None-Match”, etagValue)
 .get(uriOfResource);

 // Then
 assertTrue(secondFindOneResponse.getStatusCode() == 200);
}

Step by step:

• a Resource is first created and then retrieved – the ETag value is stored for further use

• the same Resource is then updated

• a new retrieve request is sent, this time with the “If-None-Match” header specifying the

6. ETags are BIG

Page 81 / 113

Building a REST API with

ETag value previously stored

• on this second request, the server will returns a 200 OK along with the full Resource,

since the ETag value is no longer correct, as the Resource has been updated in the

meantime

Finally, the last test – which is not going to work because the functionality has not yet been

implemented in Spring – is the support for the If-Match HTTP header:

@Test
public void givenResourceExists_whenRetrievedWithIfMatchIncorrectEtag_then412IsReceived() {
 // Given
 T existingResource = getApi().create(createNewEntity());

 // When
 String uriOfResource = baseUri + “/” + existingResource.getId();
 Response findOneResponse = RestAssured.given().header(“Accept”, “application/json”).
 headers(“If-Match”, randomAlphabetic(8)).get(uriOfResource);

 // Then
 assertTrue(findOneResponse.getStatusCode() == 412);
}

Step by step:

• a Resource is first created

• the Resource is then retrieved with the “If-Match” header specifying an incorrect ETag

value – this is a conditional GET request

• the server should return a 412 Precondition Failed

6. ETags are BIG
We have only used ETags for read operations – a RFC exists trying to clarify how

implementations should deal with ETags on write operations – this is not standard, but is an

interesting read.

There are of course other possible uses of the ETag mechanism, such an for an Optimistic

Locking Mechanism using Spring 3.1 as well as dealing with the related “Lost Update Problem”.

There are also several known potential pitfalls and caveats to be aware of when using ETags.

https://jira.spring.io/browse/SPR-10164
https://jira.spring.io/browse/SPR-10164
http://greenbytes.de/tech/webdav/draft-reschke-http-etag-on-write-latest.html#rfc.section.1.1
http://blog.furiousbob.com/2011/12/06/hateoas-restful-services-using-spring-3-1/
http://blog.furiousbob.com/2011/12/06/hateoas-restful-services-using-spring-3-1/
http://www.w3.org/1999/04/Editing/
https://www.mnot.net/blog/2007/08/07/etags

6. ETags are BIG

Page 82 / 113

Building a REST API with

7. Conclusion

In this section, we only scratched the surface with what’s

possible with Spring and ETags.

For a full implementation of an ETag enabled RESTful service,

along with integration tests verifying the ETag behavior,

check out the github project – this is an Eclipse based project,

so it should be easy to import and run as it is.

https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme

Building a REST API with

1. Overview

Page 84 / 113

Building a REST API with

11: REST PAGINATION IN
SPRING

1. Overview
This section will focus on the implementation of pagination in a REST API, using Spring MVC

and Spring Data.

2. Page as Resource vs Page as Representation
The first question when designing pagination in the context of a RESTful architecture is

whether to consider the page an actual Resource or just a Representation of Resources.

Treating the page itself as a resource introduces a host of problems such as no longer

being able to uniquely identify resources between calls. This, coupled with the fact that, in

the persistence layer, the page is not proper entity but a holder that is constructed when

necessary, makes the choice straightforward: the page is part of the representation.

The next question in the pagination design in the context of REST is where to include the

paging information:

• in the URI path: /foo/page/1

• the URI query: /foo?page=1

Keeping in mind that a page is not a Resource, encoding the page information in the URI is

no longer an option.

We are going to use the standard way of solving this problem by encoding the paging

information in a URI query.

3. The Controller

Page 85 / 113

Building a REST API with

3. The Controller
Now, for the implementation – the Spring MVC Controller for pagination is straightforward:

@RequestMapping(value = “admin/foo”,params = { “page”, “size” },method = GET)
@ResponseBody
public List< Foo > findPaginated(
 @RequestParam(“page”) int page, @RequestParam(“size”) int size,
 UriComponentsBuilder uriBuilder, HttpServletResponse response){

 Page< Foo > resultPage = service.findPaginated(page, size);
 if(page > resultPage.getTotalPages()){
 throw new ResourceNotFoundException();
 }
 eventPublisher.publishEvent(new PaginatedResultsRetrievedEvent< Foo >
 (Foo.class, uriBuilder, response, page, resultPage.getTotalPages(), size));

 return resultPage.getContent();
}

The two query parameters are injected into the Controller method via @RequestParam.

We’re also injecting both the Http Response and the UriComponentsBuilder to help with

Discoverability – which we are decoupling via a custom event. If that is not a goal of the API,

you can simply remove the custom event and be done.

Finally – note that the focus of this article is only the REST and the web layer – to go deeper

into the data access part of pagination you can check out this article about Pagination with

Spring Data.

4. Discoverability for REST pagination
Withing the scope of pagination, satisfying the HATEOAS constraint of REST means enabling

the client of the API to discover the next and previous pages based on the current page in

the navigation. For this purpose, we’re going to use the Link HTTP header, coupled with the

official “next“, “prev“, “first” and “last” link relation types.

http://www.petrikainulainen.net/programming/spring-framework/spring-data-jpa-tutorial-part-seven-pagination/
http://www.iana.org/assignments/link-relations/link-relations.xml

4. Discoverability for REST pagination

Page 86 / 113

Building a REST API with

In REST, Discoverability is a cross cutting concern, applicable not only to specific operations

but to types of operations. For example, each time a Resource is created, the URI of that

Resource should be discoverable by the client. Since this requirement is relevant for the

creation of ANY Resource, it should be dealt with separately and decoupled from the main

Controller flow.

With Spring, this decoupling is done with Events, as was thoroughly discussed in the previous

section focused on Discoverability of the REST Service. In the case of pagination, the event

– PaginatedResultsRetrievedEvent – is fired in the controller layer, and discoverability is

implemented with a custom listener for this event:

void addLinkHeaderOnPagedResourceRetrieval(
 UriComponentsBuilder uriBuilder, HttpServletResponse response,
 Class clazz, int page, int totalPages, int size){

 String resourceName = clazz.getSimpleName().toString().toLowerCase();
 uriBuilder.path(“/admin/” + resourceName);

 StringBuilder linkHeader = new StringBuilder();
 if(hasNextPage(page, totalPages)){
 String uriNextPage = constructNextPageUri(uriBuilder, page, size);
 linkHeader.append(createLinkHeader(uriNextPage, “next”));
 }
 if(hasPreviousPage(page)){
 String uriPrevPage = constructPrevPageUri(uriBuilder, page, size);
 appendCommaIfNecessary(linkHeader);
 linkHeader.append(createLinkHeader(uriPrevPage, “prev”));
 }
 if(hasFirstPage(page)){
 String uriFirstPage = constructFirstPageUri(uriBuilder, size);
 appendCommaIfNecessary(linkHeader);
 linkHeader.append(createLinkHeader(uriFirstPage, “first”));
 }
 if(hasLastPage(page, totalPages)){
 String uriLastPage = constructLastPageUri(uriBuilder, totalPages, size);
 appendCommaIfNecessary(linkHeader);
 linkHeader.append(createLinkHeader(uriLastPage, “last”));
 }
 response.addHeader(“Link”, linkHeader.toString());
}

In short, the listener checks if the navigation allows for a next, previous, first and last pages and

– if it does – adds the relevant URIs to the Link HTTP Header.

Note that, for brevity, I included only a partial code sample and the full code here.

5. Test Driving Pagination

Page 87 / 113

Building a REST API with

5. Test Driving Pagination
Both the main logic of pagination and discoverability are covered by small, focused integration

tests; as in the previous section, the rest-assured library is used to consume the REST service

and to verify the results.

These are a few example of pagination integration tests; for a full test suite, check out the

github project (link at the end of the section):

@Test
public void whenResourcesAreRetrievedPaged_then200IsReceived(){
 Response response = givenAuth().get(paths.getFooURL() + “?page=0&size=2”);

 assertThat(response.getStatusCode(), is(200));
}
@Test
public void whenPageOfResourcesAreRetrievedOutOfBounds_then404IsReceived(){
 String url = getFooURL() + “?page=” + randomNumeric(5) + “&size=2”;
 Response response = givenAuth().get(url);

 assertThat(response.getStatusCode(), is(404));
}
@Test
public void givenResourcesExist_whenFirstPageIsRetrieved_thenPageContainsResources(){
 createResource();

 Response response = givenAuth().get(paths.getFooURL() + “?page=0&size=2”);

 assertFalse(response.body().as(List.class).isEmpty());
}

6. Test Driving Pagination Discoverability
Testing that pagination is discoverable by a client is relatively straightforward, although

there is a lot of ground to cover. The tests are focused on the position of the current page in

navigation and the different URIs that should be discoverable from each position:

@Test
public void whenFirstPageOfResourcesAreRetrieved_thenSecondPageIsNext(){
 Response response = givenAuth().get(getFooURL()+”?page=0&size=2”);

 String uriToNextPage = extractURIByRel(response.getHeader(“Link”), “next”);

https://code.google.com/p/rest-assured/

7. Getting All Resources

Page 88 / 113

Building a REST API with

 assertEquals(getFooURL()+”?page=1&size=2”, uriToNextPage);
}

@Test
public void whenFirstPageOfResourcesAreRetrieved_thenNoPreviousPage(){
 Response response = givenAuth().get(getFooURL()+”?page=0&size=2”);

 String uriToPrevPage = extractURIByRel(response.getHeader(“Link”), “prev”);
 assertNull(uriToPrevPage);
}
@Test
public void whenSecondPageOfResourcesAreRetrieved_thenFirstPageIsPrevious(){
 Response response = givenAuth().get(getFooURL()+”?page=1&size=2”);

 String uriToPrevPage = extractURIByRel(response.getHeader(“Link”), “prev”);
 assertEquals(getFooURL()+”?page=0&size=2”, uriToPrevPage);
}
@Test
public void whenLastPageOfResourcesIsRetrieved_thenNoNextPageIsDiscoverable(){
 Response first = givenAuth().get(getFooURL()+”?page=0&size=2”);
 String uriToLastPage = extractURIByRel(first.getHeader(“Link”), “last”);

 Response response = givenAuth().get(uriToLastPage);

 String uriToNextPage = extractURIByRel(response.getHeader(“Link”), “next”);
 assertNull(uriToNextPage);
}

Note that the full low level code for extractURIByRel – responsible for extracting the URIs by

rel relation is here.

7. Getting All Resources
On the same topic of pagination and discoverability, the choice must be made if a client is

allowed to retrieve all the Resources in the system at once, or if the client MUST ask for them

paginated. If the choice is made that the client cannot retrieve all Resources with a single

request, and pagination is not optional but required, then several options are available for the

response to a get all request. One option is to return a 404 (Not Found) and use the Link

header to make the first page discoverable:

Link=<http://localhost:8080/rest/api/admin/foo?page=0&size=2>; rel=”first“, <http://

localhost:8080/rest/api/admin/foo?page=103&size=2>; rel=”last“

https://gist.github.com/eugenp/8269915

8. REST Paging with Range HTTP headers

Page 89 / 113

Building a REST API with

Another option is to return redirect – 303 (See Other) – to the first page. A more conservative

route would be to simply return to the client a 405 (Method Not Allowed) for the GET request.

8. REST Paging with Range HTTP headers
A relatively different way of implementing pagination is to work with the HTTP Range headers

– Range, Content-Range, If-Range, Accept-Ranges – and HTTP status codes – 206 (Partial

Content), 413 (Request Entity Too Large), 416 (Requested Range Not Satisfiable). One view on

this approach is that the HTTP Range extensions were not intended for pagination, and that

they should be managed by the Server, not by the Application. Implementing pagination based

on the HTTP Range header extensions is nevertheless technically possible, although not nearly

as common as the implementation discussed in this section.

9. Conclusion
We illustrated how to implement Pagination in a REST API

using Spring, and discussed how to set up and test

Discoverability.

If you want to go in depth on pagination in the persistence level, check out my

JPA or Hibernate pagination tutorials.

The implementation of all these examples and code snippets can be found in my

github project – this is an Eclipse based project, so it should be easy to import and

run as it is.

http://www.baeldung.com/jpa-pagination
http://www.baeldung.com/hibernate-pagination
https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme
https://github.com/eugenp/tutorials/tree/master/spring-security-rest-full#readme

Building a REST API with

1. Overview

Page 91 / 113

Building a REST API with

12: ERROR HANDLING FOR
REST WITH SPRING

1. Overview
This section will focus on how to implement Exception Handling with Spring for a REST API.

We’ll look at both the recommended solution with Spring 3.2 and 4.x but also at the older

options as well.

Before Spring 3.2, the two main approaches to handling exceptions in a Spring MVC

application were: HandlerExceptionResolver or the @ExceptionHandler annotation. Both of

these have some clear downsides.

After 3.2 we now have the new @ControllerAdvice annotation to address the limitations of

the previous two solutions.

All of these do have one thing in common – they deal with the separation of concerns very

well. The app can throw exception normally to indicate a failure of some kind – exceptions

which will then be handled separately.

2. Solution 1 – The Controller level @
ExceptionHandler
The first solution works at the @Controller level – we will define a method to handle

exceptions, and annotate that with @ExceptionHandler:

3. Solution 2 – The HandlerExceptionResolver

Page 92 / 113

Building a REST API with

public class FooController{
 ...
 @ExceptionHandler({ CustomException1.class, CustomException2.class })
 public void handleException() {
 //
 }
}

This approach has a major drawback – the @ExceptionHandler annotated method is only

active for that particular Controller, not globally for the entire application. Of course adding

this to every controller makes it not well suited for a general exception handling mechanism.

The limitation is often worked around by having all Controllers extend a Base Controller

class – however, this can be a problem for applications where, for whatever reasons, the

Controllers cannot be made to extend from such a class. For example, the Controllers

may already extend from another base class which may be in another jar or not directly

modifiable, or may themselves not be directly modifiable.

Next, we’ll look at another way to solve the exception handling problem – one that is global

and does not include any changes to existing artifacts such as Controllers.

3. Solution 2 – The HandlerExceptionResolver
The second solution is to define an HandlerExceptionResolver – this will resolve any

exception thrown by the application. It will also allow us to implement a uniform exception

handling mechanism in our REST API.

Before going for a custom resolver, let’s go over the existing implementations.

3.1. ExceptionHandlerExceptionResolver
This resolver was introduced in Spring 3.1 and is enabled by default in the DispatcherServlet.

This is actually the core component of how the @ExceptionHandler mechanism presented

earlier works.

3.2. DefaultHandlerExceptionResolver

Page 93 / 113

Building a REST API with

3.2. DefaultHandlerExceptionResolver
This resolver was introduced in Spring 3.0 and is enabled by default in the DispatcherServlet.

It is used to resolve standard Spring exceptions to their corresponding HTTP Status Codes,

namely Client error – 4xx and Server error – 5xx status codes. Here is the full list of the Spring

Exceptions it handles, and how these are mapped to status codes.

While it does set the Status Code of the Response properly, one limitation is that it doesn’t

set anything to the body of the Response. And for a REST API – the Status Code is really not

enough information to present to the Client – the response has to have a body as well, to allow

the application to give additional information about the failure.

This can be solved by configuring View resolution and rendering error content through

ModelAndView, but the solution is clearly not optimal – which is why a better option has been

made available with Spring 3.2 – we’ll talk about that in the latter part of this section.

3.3. ResponseStatusExceptionResolver
This resolver was also introduced in Spring 3.0 and is enabled by default in the

DispatcherServlet. It’s main responsibility is to use the @ResponseStatus annotation available

on custom exceptions and to map these exceptions to HTTP status codes.

Such a custom exception may look like:

@ResponseStatus(value = HttpStatus.NOT_FOUND)
public final class ResourceNotFoundException extends RuntimeException {
 public ResourceNotFoundException() {
 super();
 }
 public ResourceNotFoundException(String message, Throwable cause) {
 super(message, cause);
 }
 public ResourceNotFoundException(String message) {
 super(message);
 }
 public ResourceNotFoundException(Throwable cause) {
 super(cause);
 }
}

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html#mvc-ann-rest-spring-mvc-exceptions

3.4. SimpleMappingExceptionResolver and AnnotationMethodHandlerExceptionResolver

Page 94 / 113

Building a REST API with

Same as the DefaultHandlerExceptionResolver, this resolver is limited in the way it deals with

the body of the response – it does map the Status Code on the response, but the body is still

null.

3.4. SimpleMappingExceptionResolver and
AnnotationMethodHandlerExceptionResolver
The SimpleMappingExceptionResolver has been around for quite some time – it comes out

of the older Spring MVC model and is not very relevant for a REST Service. It is used to map

exception class names to view names.

The AnnotationMethodHandlerExceptionResolver was introduced in Spring 3.0 to handle

exceptions through the @ExceptionHandler annotation, but has been deprecated by

ExceptionHandlerExceptionResolver as of Spring 3.2.

3.5. Custom HandlerExceptionResolver
The combination of DefaultHandlerExceptionResolver and ResponseStatusExceptionResolver

goes a long way towards providing a good error handling mechanism for a Spring RESTful

Service. The downside is – as mentioned before – no control over the body of the response.

Ideally, we’d like to be able to output either JSON or XML, depending on what format the client

has asked for (via the Accept header).

This alone justifies creating a new, custom exception resolver:

@Component
public class RestResponseStatusExceptionResolver extends AbstractHandlerExceptionResolver {

 @Override
 protected ModelAndView doResolveException
 (HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) {
 try {
 if (ex instanceof IllegalArgumentException) {
 return handleIllegalArgument((IllegalArgumentException) ex, response, handler);
 }
 ...

4. Solution 3 – The New @ControllerAdvice (Spring 3.2 And Above)

Page 95 / 113

Building a REST API with

 } catch (Exception handlerException) {
 logger.warn(“Handling of [“ + ex.getClass().getName() + “]
 resulted in Exception”, handlerException);
 }
 return null;
 }

 private ModelAndView handleIllegalArgument
 (IllegalArgumentException ex, HttpServletResponse response) throws IOException {
 response.sendError(HttpServletResponse.SC_CONFLICT);
 String accept = request.getHeader(HttpHeaders.ACCEPT);
 ...
 return new ModelAndView();
 }
}

One detail to notice here is the Request itself is available, so the application can consider the

value of the Accept header sent by the client. For example, if the client asks for application/

json then, in case of an error condition, the application should still return a response body

encoded with application/json.

The other important implementation detail is that a ModelAndView is returned – this is the

body of the response and it will allow the application to set whatever is necessary on it.

This approach is a consistent and easily configurable mechanism for the error handling of a

Spring REST Service. It is does however have limitations: it’s interacting with the low level

HtttpServletResponse and it fits into the old MVC model which uses ModelAndView – so

there’s still room for improvement.

4. Solution 3 – The New @ControllerAdvice (Spring 3.2
And Above)
Spring 3.2 brings support for a global @ExceptionHandler with the new @ControllerAdvice

annotation. This enables a mechanism that breaks away from the older MVC model and makes

use of ResponseEntity along with the type safety and flexibility of @ExceptionHandler:

4. Solution 3 – The New @ControllerAdvice (Spring 3.2 And Above)

Page 96 / 113

Building a REST API with

@ControllerAdvice
public class RestResponseEntityExceptionHandler extends ResponseEntityExceptionHandler {

 @ExceptionHandler(value = { IllegalArgumentException.class, IllegalStateException.class })
 protected ResponseEntity<Object> handleConflict(RuntimeException ex, WebRequest request) {
 String bodyOfResponse = “This should be application specific”;
 return handleExceptionInternal(ex, bodyOfResponse,
 new HttpHeaders(), HttpStatus.CONFLICT, request);
 }
}

The new annotation allows the multiple scattered @ExceptionHandler from before to be

consolidated into a single, global error handling component.

The actual mechanism is extremely simple but also very flexible:

• it allows full control over the body of the response as well as the status code

• it allows mapping of several exceptions to the same method, to be handled together

• it makes good use of the newer RESTful ResposeEntity response

One thing to keep in mind here is to match the exceptions declared with @ExceptionHandler

with the exception used as argument of the method. If these don’t match, the compiler will not

complain – no reason it should, and Spring will not complain either.

However, when the exception is actually thrown at runtime, the exception resolving

mechanism will fail with:

java.lang.IllegalStateException: No suitable resolver for argument [0] [type=...]
HandlerMethod details: ...

4. Solution 3 – The New @ControllerAdvice (Spring 3.2 And Above)

Page 97 / 113

Building a REST API with

5. Conclusion
We discussed here several ways to implement an exception

handling mechanism for a REST API in Spring, starting with

the older mechanism and continuing with the Spring 3.2

support and into 4.0 and 4.1.

It’s an Eclipse based project, so it should be easy to import and run as it is.

Building a REST API with

1. The Problem

Page 99 / 113

Building a REST API with

13: VERSIONING A REST API

1. The Problem
Evolving a REST API is a difficult problem – one for which many options are available. This

section discusses through some of these options.

2. What is in the Contract?
Before anything else, we need to answer one simple question: What is the Contract between

the API and the Client?

2.1. URIs part of the Contract?
Let’s first consider the URI structure of the REST API – is that part of the contract? Should

clients bookmark, hardcode and generally rely on URIs of the API?

If they would, then the interaction of the Client with the REST Service would no longer be

driven by the Service itself, but by what Roy Fielding calls out-of-band information:

A REST API should be entered with no prior knowledge beyond the initial URI (bookmark)

and set of standardized media types that are appropriate for the intended audience…Failure

here implies that out-of-band information is driving interaction instead of hypertext.

So clearly URIs are not part of the contract! The client should only know a single URI – the

entry point to the API – all other URIs should be discovered while consuming the API.

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

2.2. Media Types part of the Contract?

Page 100 / 113

Building a REST API with

2.2. Media Types part of the Contract?
What about the Media Type information used for the representations of Resources – are

these part of the contract between the Client and the Service?

In order to successfully consume the API, the Client must have prior knowledge of these

Media Types – in fact, the definition of these media types represents the entire contract, and

is where the REST Service should focus the most:

A REST API should spend almost all of its descriptive effort in defining the media type(s)

used for representing resources and driving application state, or in defining extended relation

names and/or hypertext-enabled mark-up for existing standard media types.

So the Media Type definitions are part of the contract and should be prior knowledge for the

client that consumes the API – this is where standardization comes in.

We now have a good idea of what the contract is, let’s move on to how to actually tackle the

versioning problem.

3. High Level Options
Let’s now discuss the high level approaches to versioning the REST API:

• URI Versioning – version the URI space using version indicators

• Media Type Versioning – version the Representation of the Resource

When we introduce the version in the URI space, the Representations of Resources are

considered immutable, so when changes need to be introduced in the API, a new URI space

needs to be created.

3. High Level Options

Page 101 / 113

Building a REST API with

For example, say an API publishes the following resources – users and privileges:

http://host/v1/users
http://host/v1/privileges

Now, let’s consider that a breaking change in the users API requires a second version to be

introduced:

http://host/v2/users
http://host/v2/privileges

When we version the Media Type and extend the language, we go through Content

Negotiation based on this header. The REST API would make use of custom vendor MIME

media types instead of generic media types such as application/json. It is these media types

that are going to be versioned instead of the URIs.

For example:

===>
GET /users/3 HTTP/1.1
Accept: application/vnd.myname.v1+json
<===
HTTP/1.1 200 OK
Content-Type: application/vnd.myname.v1+json
{
 “user”: {
 “name”: “John Smith”
 }
}

What is important to understand here is that the client makes no assumptions about the

structure of the response beyond what is defined in the media type. This is why generic media

types are not ideal – these do not provide enough semantic information and force the client to

use require additional hints to process the actual representation of the resource.

An exception to this is using some other way of uniquely identifying the semantics of the

content – such as an XML schema.

http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-16#section-5.2
http://tools.ietf.org/html/rfc4288#section-3.2
http://tools.ietf.org/html/rfc4288#section-3.2

4. Advantages and Disadvantages

Page 102 / 113

Building a REST API with

4. Advantages and Disadvantages
Now that we have a clear concept of what is part of the Contract between the Client and the

Service, as well as a high level overview of the options to version the API, let’s discuss the

advantages and disadvantages of each approach.

First, introducing version identifiers in the URI leads to a very large URI footprint. This is due to

the fact that any breaking change in any of the published APIs will introduce a whole new tree

of representations for the entire API. Over time, this becomes a burden to maintain as well as a

problem for the client – which now has more options to choose from.

Version identifiers in the URI is also severely inflexible – there is no way to simply evolve the

API of a single Resource, or a small subset of the overall API. As we mentioned before, this is

an all or nothing approach – if part of the API moves to the new version, then the entire API has

to move along with it. This also makes upgrading clients from v1 to v2 a major undertaking –

which leads to slower upgrades and much longer sunset periods for the old versions.

HTTP Caching is also a major concern when it comes to versioning.

From the perspective of proxy caches in the middle, each approach has advantages and

disadvantages: if the URI is versioned, then the cache will need to keep multiple copies of each

Resource – one for every version of the API. This puts load on the cache and decreases the

cache hit rate, since different clients will use different versions. Also, some cache invalidation

mechanisms will no longer work. If the media type is the one that is versioned, then both the

Client and the Service need to support the Vary HTTP header to indicate that there are multiple

versions being cached.

From the perspective of client caching however, the solution that versions the media type

involves slightly more work than the one where URIs contain the version identifier. This is

because it’s simply easier to cache something when its key is an URL than a media type.

Let’s end this section with defining some goals (straight out of API Evolution):

• keep compatible changes out of names

• avoid new major versions

• makes changes backwards-compatible

• think about forwards-compatibility

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44
https://www.mnot.net/blog/2012/12/04/api-evolution

5. Possible Changes to the API

Page 103 / 113

Building a REST API with

5. Possible Changes to the API
Next, let’s consider the types of changes to the REST API – these are introduced here:

• representation format changes

• resource changes

5.1. Adding to the Representation of a Resource
The format documentation of the media type should be designed with forward compatibility in

mind; specifically – a client should ignore information that it doesn’t understand (which JSON

does better than XML).

Now, adding information in the Representation of a resource will not break existing clients if

these are correctly implemented.

To continue our earlier example, adding the amount in the representation of the user will not

be a breaking change:

{
 “user”: {
 “name”: “John Smith”,
 “amount”: “300”
 }
}

5.2. Removing or changing an existing Representation
Removing, renaming or generally restructuring information in the design of existing

representations is a breaking change for clients, because they already understand and rely on

the old format.

This is where Content Negotiation comes in – for such changes, a new vendor MIME media

type needs to be introduced.

5.3. Major Semantic Changes

Page 104 / 113

Building a REST API with

Let’s continue with the previous example – say we want to break the name of the user into

firstname and lastname:

===>
GET /users/3 HTTP/1.1
Accept: application/vnd.myname.v2+json
<===
HTTP/1.1 200 OK
Content-Type: application/vnd.myname.v2+json
{
 “user”: {
 “firstname”: “John”,
 “lastname”: “Smith”,
 “amount”: “300”
 }
}

As such, this does represent an incompatible change for the Client – which will have to request

the new Representation and understand the new semantics, but the URI space will remain

stable and will not be affected.

5.3. Major Semantic Changes
These are changes in the meaning of the Resources, the relations between them or what the

map to in the backend. This kinds of changes may require a new media type, or they may

require publishing a new, sibling Resource next to the old one and making use of linking to

point to it.

While this sounds like using version identifiers in the URI all over again, the important

distinction is that the new Resource is published independently of any other Resources in the

API and will not fork the entire API at the root.

The REST API should adhere to the HATEOAS constraint – most of the URIs should be

DISCOVERED by Clients, not hardcoded. Changing such an URI should not be considered an

incompatible change – the new URI can replace the old one and Clients will be able to re-

discover the URI and still function.

It is worth noting however that, while using version identifiers in the URI is problematic for all

of these reasons, it is not un-RESTful in any way.

5.3. Major Semantic Changes

Page 105 / 113

Building a REST API with

6. Conclusion
This section tried to provide an overview of the very diverse

and difficult problem of evolving a REST Service. We

discussed the two common solutions, advantages and

disadvantages of each one, and ways to reason about these

approaches in the context of REST. The material concludes by

making the case for the second solution – versioning the

media types, while examining the possible changes to a RESTful API.

Building a REST API with

1. Overview

Page 107 / 113

Building a REST API with

14: TESTING REST WITH
MULTIPLE MIME TYPES

1. Overview
This final section will focus on testing a REST Service with multiple Media Types/

representations.

We will write integration tests capable of switching between the multiple types of

Representations supported by the API. The goal is to be able to run the exact same test

consuming the exact same URIs of the service, just asking for a different Media Type.

2. Goals
Any REST API needs to expose it’s Resources as representations using some sort of Media

Type, and in many cases more than a single one. The client will set the Accept header to

choose the type of representation it asks for from the service.

Since the Resource can have multiple representations, the server will have to implement a

mechanism responsible with choosing the right representation – also known as Content

Negotiation. Thus, if the client asks for application/xml, then it should get an XML

representation of the Resource, and if it asks for application/json, then it should get JSON.

3. Testing Infrastructure
We’ll begin by defining a simple interface for a marshaller – this will be the main abstraction

that will allow the test to switch between different Media Types:

3. Testing Infrastructure

Page 108 / 113

Building a REST API with

public interface IMarshaller {
 ...
 String getMime();
}

Then we need a way to initialize the right marshaller based on some form of external

configuration. For this mechanism, we will use a Spring FactoryBean to initialize the

marshaller and a simple property to determine which marshaller to use:

@Component
@Profile(“test”)
public class TestMarshallerFactory implements FactoryBean<IMarshaller> {

 @Autowired
 private Environment env;

 public IMarshaller getObject() {
 String testMime = env.getProperty(“test.mime”);
 if (testMime != null) {
 switch (testMime) {
 case “json”:
 return new JacksonMarshaller();
 case “xml”:
 return new XStreamMarshaller();
 default:
 throw new IllegalStateException();
 }
 }

 return new JacksonMarshaller();
 }

 public Class<IMarshaller> getObjectType() {
 return IMarshaller.class;
 }

 public boolean isSingleton() {
 return true;
 }
}

Let’s look over this:

• first, the new Environment abstraction introduced in Spring 3.1 is used here – for

more on this check out the detailed article on using Properties with Spring

• the test.mime property is retrieved from the environment and used to determine

http://www.baeldung.com/2012/02/06/properties-with-spring/

4. The JSON and XML Marshallers

Page 109 / 113

Building a REST API with

which marshaller to create – some Java 7 switch on String syntax at work here

• next, the default marshaller, in case the property is not defined at all, is going to be the

Jackson marshaller for JSON support

• finally – this BeanFactory is only active in a test scenario, as the new @Profile support,

also introduced in Spring 3.1 is used

That’s it – the mechanism is able to switch between marshallers based on whatever the value of

the test.mime property is.

4. The JSON and XML Marshallers
Moving on, we’ll need the actual marshaller implementation – one for each supported Media

Type.

For JSON we’ll use Jackson as the underlying library:

public class JacksonMarshaller implements IMarshaller {
 private ObjectMapper objectMapper;

 public JacksonMarshaller() {
 super();
 objectMapper = new ObjectMapper();
 }

 ...

 @Override
 public String getMime() {
 return MediaType.APPLICATION_JSON.toString();
 }
}

For the XML support, the marshaller uses XStream:

public class XStreamMarshaller implements IMarshaller {
 private XStream xstream;

 public XStreamMarshaller() {
 super();
 xstream = new XStream();
 }

5. Consuming the Service with both JSON and XML

Page 110 / 113

Building a REST API with

 ...

 public String getMime() {
 return MediaType.APPLICATION_XML.toString();
 }
}

Note that these marshallers are not Spring beans themselves. The reason for that is they will

be bootstrapped into the Spring context by the TestMarshallerFactory, so there is no need to

make them components directly.

5. Consuming the Service with both JSON and XML
At this point we should be able to run a full integration test against the deployed service. Using

the marshaller is straightforward – an IMarshaller is simply injected directly into the test:

@ActiveProfiles({ “test” })
public abstract class SomeRestLiveTest {

 @Autowired
 private IMarshaller marshaller;

 // tests
 ...

}

The exact marshaller that will be injected by Spring will of course be decided by the value

of test.mime property; this could be picked up from a properties file or simply set on

the test environment manually. If however a value is not provided for this property, the

TestMarshallerFactory will simply fall back on the default marshaller – the JSON marshaller.

6. Maven and Jenkins

Page 111 / 113

Building a REST API with

6. Maven and Jenkins
If Maven is set up to run integration tests against an already deployed REST Service, then it can

be run like this:

mvn test -Dtest.mime=xml

Or, if this the build uses the integration-test phase of the Maven lifecycle:

mvn integration-test -Dtest.mime=xml

For more details about how to use these phases and how to set up the a Maven build so that it

will bind the deployment of the application to the pre-integration-test goal, run the integration

tests in the integration-test goal and then shut down the deployed service in on post-

integration-test, see the Integration Testing with Maven article.

With Jenkins, the job must be configured with:

This build is parametrized

And the String parameter: test.mime=xml added.

A common Jenkins configuration would be having to jobs running the same set of integration

tests against the deployed service – one with XML and the other with JSON representations.

http://www.baeldung.com/2011/10/16/how-to-set-up-integration-testing-with-the-maven-cargo-plugin/

6. Maven and Jenkins

Page 112 / 113

Building a REST API with

7. Conclusion
This section showed how to properly test a REST API that

works with multiple representations. Most APIs do publish

their Resources under multiple Representations, so testing all

of these is vital; the fact that we can use the exact same tests

across all of them is just cool.

The full implementation of this mechanism – using actual integration tests and

verifying both the XML and JSON representations – can be found in the github

project. This is an Eclipse based project, so it should be easy to import and run as

it is.

https://github.com/eugenp/tutorials/tree/master/spring-jpa#readme
https://github.com/eugenp/tutorials/tree/master/spring-jpa#readme

Building a REST API with

	1: Bootstrap a Web Application with Spring 4
	1. Overview
	2. The Maven pom.xml
	2.1. The cglib dependency before Spring 3.2
	2.2. The cglib dependency in Spring 3.2 and beyond
	3. The Java based Web Configuration
	3.1. The web.xml
	4. Conclusion

	2: Build a REST API with Spring 4 and Java Config
	1. Overview
	2. Understanding REST in Spring
	3. The Java Configuration
	4. Testing the Spring Context
	5. The Controller
	6. Mapping the HTTP response codes
	6.1. Unmapped Requests
	6.2. Valid, Mapped Requests
	6.3. Client Error
	6.4. Using @ExceptionHandler
	7. Additional Maven dependencies
	8. Conclusion

	3: Spring Security for a REST API
	1. Overview
	2. Spring Security in the web.xml
	3. The Security Configuration
	3.2. The Entry Point
	3.3. The Login Form for REST
	3.4. Authentication should return 200 instead of 301
	3.5. Failed Authentication should return 401 instead of 302
	3.6. The Authentication Manager and Provider
	3.7 Finally – Authentication against the running REST Service
	4. Maven and other trouble
	5. Conclusion

	4: Spring Security Basic Authentication
	1. Overview
	2. The Spring Security Configuration
	3. Consuming The Secured Application
	4. Further Configuration – The Entry Point
	5. The Maven Dependencies
	6. Conclusion

	5: Spring Security Digest Authentication
	1. Overview
	2. The Security XML Configuration
	3. Consuming the Secured Application
	4. The Maven Dependencies
	5. Conclusion

	6: Basic and Digest Authentication for a REST Service with Spring Security
	1. Overview
	2. Configuration of Basic Authentication
	2.1. Satisfying the stateless constraint – getting rid of sessions
	3. Configuration of Digest Authentication
	4. Supporting both authentication protocols in the same RESTful service
	4.1. Anonymous request
	4.2. Request with authentication credentials
	5. Testing both scenarios
	6. Conclusion

	7: Http Message Converters with the Spring Framework
	1. Overview
	2. The Basics
	2.1. Enable Web MVC
	2.2. The Default Message Converters
	3. Client-Server Communication – JSON only
	3.1. High Level Content Negotiation
	3.2. @ResponseBody
	3.3. @RequestBody
	4. Custom Converters Configuration – adding XML Support
	5. Using Spring’s RestTemplate with Http Message Converters
	5.1. Retrieving the Resource with no Accept Header
	5.2. Retrieving a Resource with application/xml Accept header
	5.3. Retrieving a Resource with application/json Accept header
	5.4. Update a Resource with XML Content-Type
	6. Conclusion

	8: REST API Discoverability and HATEOAS
	1. Overview
	2. Why make the API Discoverable
	3. Discoverability Scenarios (Driven by tests)
	3.1. Discover the valid HTTP methods
	3.2. Discover the URI of newly created Resource
	3.3. Discover the URI to GET All Resources of that type
	4. Other potential discoverable URIs and microformats
	5. Conclusion

	9: HATEOAS for a Spring REST Service
	1. Overview
	2. Decouple Discoverability through events
	3. Make the URI of a newly created Resource discoverable
	4. Get of single Resource
	5. Discoverability at the Root
	5.1. Discoverability is not about changing URIs
	6. Caveats of Discoverability
	7. Conclusion

	10: ETags for REST with Spring
	1. Overview
	2. REST and ETags
	3. Client-Server communication with curl
	4. ETag support in Spring
	5. Testing ETags
	6. ETags are BIG
	7. Conclusion

	11: REST Pagination in Spring
	1. Overview
	2. Page as Resource vs Page as Representation
	3. The Controller
	4. Discoverability for REST pagination
	5. Test Driving Pagination
	6. Test Driving Pagination Discoverability
	7. Getting All Resources
	8. REST Paging with Range HTTP headers
	9. Conclusion

	12: Error Handling for REST with Spring
	1. Overview
	2. Solution 1 – The Controller level @ExceptionHandler
	3. Solution 2 – The HandlerExceptionResolver
	3.1. ExceptionHandlerExceptionResolver
	3.2. DefaultHandlerExceptionResolver
	3.3. ResponseStatusExceptionResolver
	3.4. SimpleMappingExceptionResolver and AnnotationMethodHandlerExceptionResolver
	3.5. Custom HandlerExceptionResolver
	4. Solution 3 – The New @ControllerAdvice (Spring 3.2 And Above)
	5. Conclusion

	13: Versioning a REST API
	1. The Problem
	2. What is in the Contract?
	2.1. URIs part of the Contract?
	2.2. Media Types part of the Contract?
	3. High Level Options
	4. Advantages and Disadvantages
	5. Possible Changes to the API
	5.1. Adding to the Representation of a Resource
	5.2. Removing or changing an existing Representation
	5.3. Major Semantic Changes
	6. Conclusion

	14: Testing REST with multiple MIME types
	1. Overview
	2. Goals
	3. Testing Infrastructure
	4. The JSON and XML Marshallers
	5. Consuming the Service with both JSON and XML
	6. Maven and Jenkins
	7. Conclusion

